DOI QR코드

DOI QR Code

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol (Nuricell Inc., 4F/GS Caltex New Energy Development Centre) ;
  • Park, Ho-Young (Nuricell Inc., 4F/GS Caltex New Energy Development Centre) ;
  • Lim, Young-Chang (Nuricell Inc., 4F/GS Caltex New Energy Development Centre) ;
  • Lee, Ki-Chang (Nuricell Inc., 4F/GS Caltex New Energy Development Centre) ;
  • Choi, Kyu-Gil (Nuricell Inc., 4F/GS Caltex New Energy Development Centre) ;
  • Park, Gi-Back (Nuricell Inc., 4F/GS Caltex New Energy Development Centre)
  • 발행 : 2008.05.31

초록

Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.

키워드

참고문헌

  1. K. Kanehori, K. Matsumoto, K. Miyauchi, and T. Kudo, Solid State Ionics, 9-10, 1445 (1983) https://doi.org/10.1016/0167-2738(83)90192-3
  2. H. Ohtsuka, S. Okada, and J. Yamaki, Solid State Ionics, 40-41, 964 (1990) https://doi.org/10.1016/0167-2738(90)90163-L
  3. S. D. Jones and J. R. Akridge, Solid State Ionics, 53-56, 628 (1992) https://doi.org/10.1016/0167-2738(92)90439-V
  4. J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Robertson, Solid State Ionics, 53-56, 647 (1992) https://doi.org/10.1016/0167-2738(92)90442-R
  5. J. B. Bates, G. R. Gruzalski, N. J. Dudney, C. F. Luck, and X. Yu, Solid State Ionics, 70-71, 619 (1994) https://doi.org/10.1016/0167-2738(94)90383-2
  6. J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Robertson, J. Power Sources, 43-44, 103 (1993)
  7. M. Baba, N. Kumagai, H. Fujita, K. Ohta, K. Nishidate, S. Komaba, B. Kaplan, H. Groult, and D. Devilliers, J. Power Sources, 119-121 914 (2003) https://doi.org/10.1016/S0378-7753(03)00223-4
  8. H. Y. Park, S. C. Nam, Y. C. Lim, K. G. Choi, K. C. Lee, G. B. Park, J. B. Kim, H. P. Kim, and S. B. Cho, Electrochim. Acta, 52, 2062 (2007) https://doi.org/10.1016/j.electacta.2006.08.026
  9. R. W. Hart, H. S. White, B. Dunn, and D. R. Rolison, Electrochem. Commun., 5, 120 (2003) https://doi.org/10.1016/S1388-2481(02)00556-8
  10. D. Golodnitsky, M. Nathan, V. Yufit, E. Strauss, K. Freedman, L. Burstein, A. Gladkich, and E. Peled, Solid State Ionics, 177, 2811 (2006) https://doi.org/10.1016/j.ssi.2006.02.048
  11. M. Nathan, D. Golodnitsky, V. Yufit, E. Strauss, T. Ripenbein, I. Shechtman, S. Menkin, and E. Peled, J. MEMS, 14, 879 (2005) https://doi.org/10.1109/JMEMS.2005.851860
  12. J. B. Bates, N. J. Dudney, B. J. Neudecker, F. X. Hart, H. P. Jun, and S. A. Hackney, J. Electrochem. Soc., 147, 59 (2000) https://doi.org/10.1149/1.1393157