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STABILITY OF THE ∂-ESTIMATES AND THE MERGELYAN
PROPERTY FOR WEAKLY q-CONVEX MANIFOLDS

Yeon Seok Seo

Abstract. Let r ≥ q. We get the stability of the estimates of the ∂-

Neumann problem for (p, r)-forms on a weakly q-convex complex sub-

manifold. As a by-product of the stability of the ∂-estimates, we get the
Mergelyan approximation property for (p, r)-forms on a weakly q-convex

complex submanifold which satisfies property (P).

1. Introduction and preliminaries

In [6], Ho introduced the nortions of weak q-convexity and q-subharmonicity
and he treated L2-estimates and existence theorems for solutions of the ∂-
equation on weakly q-convex domains. Thus we know that the weak q-convexity
is proper for the study of the ∂-equation for (p, q)-forms.

Let M be a complex manifold of dimension n. Let Ω ⊂⊂ M be an open
submanifold with a C3 boundary. By applying the Gram-Schmidt process in
a coordinate patch U , we can construct forms ω1, . . . , ωn, which for all z are
orthonormal basis of Λ1,0

z (U). Furthermore we can choose ωn =
√

2 ∂ρ on bΩ,
where ρ is a boundary-defining function satisfying |dρ| = 1 on bΩ. We shall
use Hörmander’s method of weighted estimates for ∂ ([7], [8]). Let ϕ ∈ C1(Ω)
be a real-valued function and define

(Φ,Ψ)ϕ =
∫

Ω

〈Φ,Ψ〉ze−ϕdV, Φ,Ψ ∈ Λp,q(U),

and ‖Φ‖2ϕ = (Φ,Φ)ϕ. We then define L2
(p,q)(Ω, ϕ) as the space of all (p, q)-forms

Φ such that ‖Φ‖ϕ < ∞. If q ≥ 1, the operator ∂ defines, in the weak sense,
closed densely defined operators

L2
(p,q−1)(Ω, ϕ) T→−→ L2

(p,q)(Ω, ϕ) S→−→ L2
(p,q+1)(Ω, ϕ).
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By T ∗ we shall mean the adjoint of T . If ϕ ∈ C2(U), then ϕjk(z), j, k =
1, . . . , n, is defined by

∂∂ϕ(z) =
n∑

j,k=1

ϕj,k(z)ωj ∧ ωk.

If Φ =
∑
I,J ΦI,JωI ∧ ωJ is a (p, q)-form, then we define

Hq(ϕ)(z,Φ) =
∑
I,K

n∑
j,k=1

ϕj,k(z)ΦI,jKΦI,kK .

Let L1, . . . , Ln be a basis of T 1,0(U) that is dual to ω1, . . . , ωn. If χ ∈ C2(R)
be a convex increasing function, then we get

(1.1)
1

2

X
I,J

nX
j=1

‖LjΦI,J‖2χ(ϕ) +
X
I,J

Z
U∩Ω

χ′(ϕ)

0@ nX
j,k=1

ϕj,kΦI,jKΦI,kK

1A e−χ(ϕ)dV

+
X
I,K

nX
j,k=1

Z
U∩bΩ

ρjkΦI,kKe
−χ(ϕ)dS

≤ ‖T ∗Φ‖2χ(ϕ) + 2‖SΦ‖2χ(ϕ) + C‖Φ‖2χ(ϕ).

To get the basic estimate we do not need the full conditions that ϕ is strongly
plurisubharmonic and that Ω is pseudoconvex, but that the following estimates∑

I,K

n∑
j,k=1

ϕj,k(z)ΦI,jKΦI,kK > C|Φ|2 on U ∩ Ω,

and that ∑
I,K

n∑
j,k

ρjkΦI,jKΦI,kK ≥ 0 for Φ ∈ DT∗ ∩DS on U ∩ bΩ.

Thus we introduce the following definitions.

Definition 1.1. We say that ϕ is q-subharmonic in a set U if Hq(ϕ)(z,Φ) ≥ 0
for all (p, q)-forms Φ on U . If it is strictly positive, we say that ϕ is strongly
q-subharmonic in U .

Definition 1.2. Let ρ be a boundary defining function of Ω. We say that bΩ is
weakly q-convex in U ∩ bΩ if at every point z ∈ U ∩ bΩ we have Hq(ρ)(z,Φ) ≥ 0
for all (p, q)-forms Φ on U such that

∑n
j (Ljρ)ΦI,jK = 0 on U ∩ bΩ.

The nortions of weak q-convexity and q-subharmonicity in Theorems 1.1
and 1.2 are invariant under unitary change of coordinates [6]. Thus we get the
following result:
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Lemma 1.3. The inequality Hq(ϕ)(z,Φ) ≥ 0 ( resp. ≥ C|Φ|2 ) holds if and
only if the inequality

q∑
j=1

H1(ϕ)(z, tj) ≥ 0 ( resp. ≥ C )

holds for every sets of vectors t1, . . . , tq that satisfy 〈tj , tk〉z = δjk.

Lemma 1.4. The q-subharmonicity and the weak q-convexity imply the (q+1)-
subharmonicity and the weak (q + 1)-convexity, respectively.

Proof. This follows from the fact that

q+1∑
j=1

H1(ϕ)(z, tj) =
1
q


q+1∑
j=1

q+1∑
i=1,i6=j

H1(ϕ)(z, ti)

 .

�

By using a partition of unity, the estimate (1.1) leads to the following propo-
sition. In all that follows we let r be a nonnegative integer with r ≥ q.

Proposition 1.5. Let Ω be a weakly q-convex submanifold, let ϕ ∈ C3(Ω) be a
function such that Ωc0 = {z ∈ Ω;ϕ(z) < c0} ⊂⊂ Ω and strongly q-subharmonic
in the set Ω∩Ωc0 . Then there exist a compact subset K in Ωc0 and a constant
C such that for all convex increasing functions χ ∈ C2(R)

(1.2)
∫
χ′(ϕ)|Φ|2e−χ(ϕ)dV ≤ C(‖T ∗Φ‖2χ(ϕ) + ‖SΦ‖2χ(ϕ) + ‖Φ‖2χ(ϕ))

for all Φ ∈ DT∗ ∩ C∞(Ω) with support in CK.

From (1.2) it follows that for large t,

(1.3)
∫
CK

|Φ|2e−tϕdV ≤ ‖T ∗Φ‖2tϕ + ‖SΦ‖2tϕ +
∫
K

|Φ|2e−tϕdV.

We shall now derive from (1.3) the L2-estimate and the existence theorem
for solutions of the ∂-equation (see [7, Theorem 3.4.1 and Theorem 1.1.4]).

Theorem 1.6. Let the hypotheses of Proposition 1.5 be fulfilled. Let {Φj} be
a sequence in DT∗ ∩DS such that for large t, ‖Φj‖tϕ is bounded and T ∗Φj →
0, SΦj → 0 in L2

(p,r∓1)(Ω, tϕ), respectively. Then one can select a strongly
convergent subsequence and there exists C > 0 such that

(a) ‖Φ‖2tϕ ≤ C(‖T ∗Φ‖2tϕ + ‖SΦ‖2tϕ), Φ ∈ DT∗ ∩DS , Φ ⊥ NT∗ ∩NS ,
(b) RT is closed,
(c) RT has finite codimension in NS.

Thus, by [7, Theorem 1.1.4], if SΨ = 0 and Ψ ⊥ NT∗ ∩ NS, then we can
find Φ ∈ DT so that TΦ = Ψ and ‖Φ‖tϕ ≤ C‖Ψ‖tϕ where C is a constant
independent of Ψ.
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We denote the quotient space

H
(p,r)

(Ω) = RT /NS ∼= NT∗ ∩NS .

We also define

H(p,r)(Ω) =
{Φ ∈ L2

(p,r)(Ω, loc) : ∂Φ = 0}
L2

(p,r)(Ω, loc) ∩ {∂Φ; Φ ∈ L2
(p,r−1)(Ω, loc)}

.

Under the hypotheses of Proposition 1.5, we get the following isomorphism
theorem, which is due to Hörmander [7, Theorem 3.4.8]. The proof essentially
depends on the estimate (1.2).

Theorem 1.7. The restriction homomorphism

H
(p,r)

(Ω)→ H
(p,r)

(Ωc0)

is an isomorphism.

Lemma 1.8. Let ϕ ∈ C3(Ω) be a function such that Ωc0 = {z ∈ Ω;ϕ(z) <
c0} ⊂⊂ Ω and strongly q-subharmonic on Ω ∩CΩc0 . Then there exists a func-
tion ψ ∈ C3(Ω) such that

(1) ψ is strongly q-subharmonic on Ω ∩ Ωc0 ,
(2) {z ∈ Ω;ϕ(z) < c0} = {z ∈ Ω;ψ < c0},
(3) {z ∈ Ω;ψ(z) < c} ⊂⊂ Ω for every c ∈ R.

Proof. Choose δ < 0 such that Ωc0 ⊂⊂ {z ∈ Ω; ρ(z) < δ}. Let χ ∈ C3(R) be
a convex increasing function such that χ(τ) = 2

3δ for τ < δ and χ(τ) = τ for
τ > δ

2 . Set

ψ = Cϕ+ log
( 2

3δ

χ ◦ r

)
− (C − 1)c0 ∈ C∞(Ω).

The weak q-convexity of Ω says that
∑q
j=1H1(ρ)(z, tj) ≥ 0 for every sets of

vectors t1, . . . , tq, where tj = (tj1, . . . , t
j
n), which satisfy

∑n
i=1 t

j
i (Liρ) = 0 (j =

1, . . . , q) and 〈tj , tk〉z = δjk (j, k = 1, . . . , q) on bΩ. We write tj = tjT + tjN
where tjT is the tangent vector and tjN is the normal vector at z of the surface
ρ = ρ(z). As ρ ∈ C3 it follows that if |δ| is sufficiently small, there is a constant
C1 > 0, so that

(1.4)
q∑
j=1

H1(ρ)(z, tjT ) ≥ −C1|ρ(z)|(
q∑
j=1

|tjT |
2) for

δ

2
< ρ(z) < 0.

The bilinearity of the Levi form implies

H1(ρ)(z, tj) = H1(ρ)(z, tjT ) +O(|tjT ||t
j
N |) +O(|tjN |

2)

= H1(ρ)(z, tjT ) +O(|tjN |)
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for δ
2 < ρ(z) < 0. Since |tjN | = O(|

∑n
i=1 t

j
i (Liρ)|), we obtain from (1.4) that

(1.5)
q∑
j=1

H1(ρ)(z, tj) ≥ −C1|ρ(z)| − C2

q∑
j=1

|
n∑
i=1

tji (Liρ)| for
δ

2
< ρ(z) < 0.

Also

H1

(
log
( 2

3δ

χ ◦ r

))
(z, tj) =

1
|χ(ρ(z))|

{χ′′(ρ(z))|
n∑
i=1

tji (Liρ)|2

+ χ′(ρ(z))H1(ρ)(z, tj)}+
∣∣∣∣χ′(ρ(z))
χ(ρ(z))

∣∣∣∣2 | n∑
i=1

tji (Liρ)|2

≥
∣∣∣∣χ′(ρ(z))
χ(ρ(z))

∣∣∣∣H1(ρ)(z, tj) +
∣∣∣∣χ′(ρ(z))
χ(ρ(z))

∣∣∣∣2 | n∑
i=1

tji (Liρ)|2

=
1

|(ρ(z))|
H1(ρ)(z, tj) +

1
|(ρ(z))|2

|
n∑
i=1

tji (Liρ)|2

where δ
2 < ρ(z) < 0. Thus we get

(1.6)
q∑
j=1

H1

(
log
( 2

3δ

χ ◦ ρ

))
(z, tj)

≥ 1
|ρ(z)|

q∑
j=1

H1(ρ)(z, tj) +
1

|ρ(z)|2
q∑
j=1

|
n∑
i=1

tji (Liρ)|2

where δ
2 < ρ(z) < 0. From (1.5) and (1.6) it follows that

q∑
j=1

H1

(
log
( 2

3δ

χ ◦ ρ

))
(z, tj) ≥ −(C1 + C2

2 ),
δ

2
< ρ(z) < 0.

Let M = inf{H1(log( 2
3δ/χ ◦ ρ))(z, t) ; ρ(z) ≤ δ

2 , ϕ(z) ≥ c0, |t| = 1} > −∞.
Since ϕ is strongly q-subharmonic on {z ∈ Ω;ϕ(z) ≥ c0},

q∑
j=1

H1(ϕ)(z, tj) ≥ C3 for z with ϕ(z) ≥ c0 .

Choose C so that
CC3 ≥ max{C1 + C2

2 , q|M |}.
Then ψ = Cϕ+ log( 2

3δ/χ ◦ ρ)− (C − 1)c0 ∈ C∞(Ω) is strongly q-subharmonic
on {z ∈ Ω;ϕ(z) ≥ c0}. It is easy to verify that properties (2) and (3) hold.
This completes the proof. �

From Lemma 1.8 and [7, Theorem 3.4.9], it follows that the homomorphism
H(p,r)(Ω)→ H

(p,r)
(Ωc0) is an isomorphism. Thus we get the following theorem.

Theorem 1.9. The homomorphism H(p,r)(Ω)→ H
(p,r)

(Ω) is an isomorphism.
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2. Stability results

In all that follows, we shall assume that Ω ⊂⊂M is an open weakly q-convex
submanifold with a smooth boundary defining function ρ. Also, we suppose
that there exists a function ϕ ∈ C∞(Ω) which is strongly q-subharmonic in a
neighborhood of bΩ. In this case, by the following lemma, we can construct
such a function described in Proposition 1.5.

Lemma 2.1. There exist a function ψ ∈ C∞(Ω), a neighborhood W of bΩ,
and a constant c0 ∈ R such that

(1) ψ is strongly q-subharmonic in W ,
(2) {z ∈ Ω ∪W ;ψ(z) < c0} ⊂⊂ Ω,
(3) {z ∈ Ω;ψ(z) ≥ c0} ⊂⊂W ∩ Ω.

Proof. Let U be a neighborhood of bΩ such that ϕ is smooth and strongly
q-subharmonic in U . With both δ > 0 and C > 0, set ϕδ = − log(2δ−ρ)+Cϕ.
Let S(δ) = {z ∈M ; 0 ≤ ρ(z) ≤ δ}. By the similar argument as in Lemma 1.8,
we can prove that for small δ and for large C, ϕδ is strongly q-subharmonic in
(U ∩Ω)∪ S(δ). Observe that there is a constant γ independent of δ, such that
if ϕδ(z) ≥ γ, then z ∈ U . Let χ ∈ C∞(R) be a convex increasing function such
that χ(τ) = γ + 1 for τ ≤ γ and χ(τ) = τ for τ ≥ γ + 2. Set

ψδ(z) =
1
C
{(χ ◦ ϕδ)(z) + log(2δ)}.

Now we choose small δ > 0 so that − log(2δ)+Cϕ ≥ γ+2 on bΩ. By the similar
method as in Lemma 1.8, we can prove that ψδ is strongly q-subharmonic and
ϕ ≤ ψδ in S(δ). By the continuity of second derivatives of ψδ, there is a
neighborhood V (in the relative topology of Ω) of bΩ such that Hq(ψδ)(z, f)
is bounded below in V by a fixed positive constant independent of δ. Thus ψδ
is strongly q-subharmonic on W = V ∪ S(δ) and W is a neighborhood of bΩ.
Choose c0 < infS(δ) ϕ. Then if we choose sufficiently small δ > 0 so that

sup
Ω−V

ψδ(z) < c0,

then {z ∈ Ω ∪ S(δ);ψδ(z) < c0} ⊂⊂ Ω and {z ∈ Ω;ψδ(z) ≥ c0} ⊂⊂ V . This
completes the proof. �

Definition 2.2. A family {Ωτ}0≤τ ,Ωτ ⊂⊂ M , of complex submanifolds with
C∞ boundary defining functions ρτ , is said to be a continuous family of diffeo-
morphic complex manifolds with diffeomorphisms dτ : Ωτ → Ω0, if

(1) d0 : Ω0 → Ω0 is an identity,
(2) the complex structures on Ωτ are C∞ close to the complex structure

on Ω0 as τ → 0,
(3) ρτ and all of its derivatives depend continuously on τ in C∞-topology,
(4) the diffeomorphisms d−1

τ depend continuously on τ in C∞-topology.
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Theorem 2.3. Let {Ωτ}0≤τ be a continuous family of diffeomorphic com-
pact weakly q-convex complex manifolds in M with C∞ defining function ρτ .
Suppose that there is ϕ ∈ C∞(Ω0) which is strongly q-subharmonic in a neigh-
borhood of bΩ0. Then there is τ0 such that H(p,r)(Ωτ ) ∼= H(p,r)(Ω0) for all
0 ≤ τ ≤ τ0.

Proof. By Lemma 2.1, we may assume that :
(2.1) φ is strongly q-subharmonic in a neigborhood W of bΩ0,
(2.2) {z ∈ Ω0 ∪W ;φ(z) < c0} ⊂⊂ Ω0,
(2.3) {z ∈ Ω0;φ(z) ≥ c0} ⊂⊂W ∩ Ω0.

Thus by Theorems 1.7 and 1.9, it follows that

H(p,r)(Ω0) ∼= H
(p,r)

(Ωc0),

where Ωc0 = {z ∈ Ω0;ϕ(z) < c0}. Since {Ωτ}0≤τ is a continuous family, there
are δ < 0 and 0 < τ0 such that Ωc0 ⊂⊂ {z ∈ Ωτ ; ρτ (z) < δ} for all 0 ≤ τ ≤ τ0.
Let χ be such a function as in Lemma 1.8. Set

ϕτ = Cϕ+ log
( 2

3δ

χ ◦ ρτ

)
− (C − 1)c0.

By the same argument as in Lemma 1.8, we can prove that if C is sufficiently
large, then ϕτ ∈ C∞(Ωτ ) is strongly q-subharmonic on Ωτ ∩CΩc0 . The above
formula ϕτ and (2.3) shows that Ωc0 = {z ∈ Ωτ ;ϕτ (z) < c0}. Clearly, ϕτ is an
exhaustion function for Ωτ . By Theorems 1.7 and 1.9, we get that H(p,r)(Ωτ ) ∼=
H

(p,r)
(Ωc0). Thus we completes the proof. �

We define the Sobolev space Hm
(p,r)(Ω) of (p, r)-forms Φ in Ω with respect to

the norm ‖Φ‖m,t which is defined by the L2-norm with the density e−tϕ. The
estimate for the Neumann operator N is given in the following estimate. For
each nonnegative integer m ≥ 0, there exist constants Tm, Cm,t, and C ′m,t such
that for all t ≥ Tm, the following estimate holds:

(2.4) ‖Φ‖2m,t ≤ Cm,t‖�Φ‖2m,t + C ′m,t‖Φ‖2m,t, Φ ∈ D�.

The proof is quite similar to that of Catlin ([1], [2]) who proves the same
result on pseudoconvex submanifolds. If Ψ is a (p, r)-form with SΨ = 0, then
Φ = T ∗NΨ is the unique solution of TΦ = Ψ which is orthogonal to the null
space of T . By the estimate (2.4), we know that

‖Φ‖m−1,t ≤ Cm(t)‖Ψ‖m,t.
But actually we can show that

(2.5) ‖Φ‖m,t ≤ Cm(t)‖Ψ‖m,t.
The proof is the same as was proved in the proof of Kohn [9] and Catlin [1].

Let O(p,r)(Ω) be the set of (p, r)-forms in Ω which satisfy the equation ∂Φ =
0. Then, by the estimate (2.5), we get the following result. The proof is the
same as in [1, Proposition 3.1.4 ].
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Lemma 2.4. Let m be a nonnegative integer. Then O(p,r)(Ω) ∩ C∞(p,r)(Ω) is
dense in O(p,r)(Ω) ∩Hm

(p,r)(Ω).

Remark 2.5. Let {Ωτ}0≤τ be a continuous family of diffeomorphic complex
manifolds. Let dτ : Ωτ → Ω0 be C∞ diffeomorphisms. It is clear that
(d−1
τ )∗T 1,0Ω0 is an almost complex structure if d−1

τ is sufficiently close to
identity, and the almost complex structures (d−1

τ )∗T 1,0Ω0 and T 1,0Ωτ are C∞

close as d−1
τ becomes close to identity. Thus we get the following: if Φτ ∈

DT∗τ ∩ C
∞
(p,r)(Ωτ ), then (d−1

τ )∗Φτ ∈ DT∗ ∩ C∞(p,r)(Ω0), and

‖T ∗((d−1
τ )∗Φτ )‖tϕ = ‖T ∗τ Φτ‖tϕ + o(τ),(2.6)

‖S((d−1
τ )∗Φτ )‖tϕ = ‖SτΦτ‖tϕ + o(τ),(2.7)

where o(τ) does not depend on Φτ .

In Theorem 1.6, we got that for large t

(2.8) ‖Φ‖2tϕ ≤ C(‖T ∗Φ‖2tϕ + ‖SΦ‖2tϕ), if Φ ∈ DT∗ ∩DS , Φ ⊥ H(p,r)(Ω).

However, in most of applications, it is essential that the constant C is stable
for small perturbations of the manifold Ω. In [4], the author get the stability
result, under the perturbations of the pseudoconvex manifold, for the estimate
(2.8). But we can draw the same stability result in the case of the weakly
q-convex manifolds.

Theorem 2.6. Let {Ωτ}0≤τ and ϕ be as in Theorem 2.3. Then there exists a
constant Ct which does not depend on τ , and there is τ0 such that

(2.9) ‖Φτ‖2tϕ ≤ Ct(‖T ∗τ Φτ‖2tϕ + ‖SτΦτ‖2tϕ),

Φτ ∈ DT∗τ
∩DSτ ∩ (H(p,r)(Ωτ ))⊥, 0 ≤ τ ≤ τ0.

Proof. If such constants do not exist, then there is a sequence {Φk} with:

Φk ∈ DT∗τk
∩DSτk

∩ (H(p,r)(Ωτ ))⊥, lim
k→∞

τk = 0, ‖Φk‖ = 1

and
lim
k→∞

(‖T ∗τkΦk‖2tϕ + ‖SτkΦk‖2tϕ) = 0.

Set Ψk = (d−1
τk

)∗Φk. Since d−1
τ → Id, by (2.6) and (2.7), it follows that

Ψk ∈ DT∗ ∩DS , lim
k→∞

‖Ψk‖tϕ = 0

and

(2.10) lim
k→∞

(‖T ∗Ψk‖2tϕ + ‖SΨk‖2tϕ) = 0.

By theorem 1.6, there is a sequence of {Ψk}, which we may assume {Ψk}
itself converges to Ψ in L2

(p,r)(Ω0, tϕ). Since (2.10) implies that T ∗Ψ = 0 and
SΨ = 0, it follows that Ψ ∈ H(p,r)(Ω0).
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Let dimH(p,r)(Ωτk) = dimH(p,r)(Ω0) = N and let {Φjk ; j = 1, . . . , N} be
an orthonormal basis of H(p,r)(Ωτk) for all k = 1, 2, . . . . Set Ψjk = (d−1

τ )∗Φjk .
Then

‖Ψjk‖tϕ ∈ DTτk
∩DSτk

, lim
k→∞

‖Ψjk‖tϕ = 1

and
lim
k→∞

(‖TΨjk‖2tϕ + ‖SΨjk‖2tϕ) = 0.

Thus we may assume that {Ψjk} itself converges to Ψj0 in L2
(p,r)(Ω0, tϕ). Then

{Ψj0}Nj=1 form a basis of H(p,r)(Ω0). But

(Ψ,Ψj0)tϕ =(Ψ,Ψj0 −Ψjk)tϕ + (Ψ−Ψk,Ψjk)tϕ
+ (Ψk,Ψjk)tϕ → 0 as k →∞.

So, dimH(p,r)(Ω0) ≥ N + 1, a contradiction. �

Theorem 2.7. Let {Ωτ}0≤τ and ϕ be as in Theorem 2.3. Then there exists a
constant Cm(t) which does not depend on τ , and there is τ0 such that

(2.11) ‖Φτ‖m,t ≤ Cm,t‖�τΦτ‖m,t, Φτ ∈ D�τ ,Φτ ⊥ H
(p,r)(Ωτ ), 0 ≤ τ ≤ τ0.

Proof. In the estimate (2.4) the constants Cm,t and C ′m,t were come from in-
tegration by parts and differentiations of the coefficients of the vector fields.
Thus there exists τ0 such that

(2.12) ‖Φτ‖2m,t ≤ Cm,t‖�τΦτ‖2m,t + C ′m,t‖Φτ‖2tϕ, Φτ ∈ D�τ , 0 ≤ τ ≤ τ0,

where Cm,t and C ′m,t are independent of τ .
From (2.8) we get that

‖Φτ‖2tϕ ≤ Ct(‖T ∗τ Φτ‖2tϕ + ‖SτΦτ‖2tϕ) = Ct(�Φτ ,Φτ )tϕ

≤ Ct(ε)‖�Φτ‖2tϕ + ε‖Φτ‖2tϕ,

where Φτ ∈ DT∗τ
∩DSτ ∩ (H(p,r)(Ωτ ))⊥, 0 ≤ τ ≤ τ0. Thus it follows that

(2.13) ‖Φτ‖tϕ ≤ C ′t‖�Φτ‖tϕ, Φτ ∈ DT∗τ
∩DSτ ∩ (H(p,r)(Ωτ ))⊥, 0 ≤ τ ≤ τ0,

where C ′t is independent of τ . By (2.12) and (2.13), we get the result. �

3. Approximation theorems

Definition 3.1. We shall say that the boundary of Ω satisfies property (P)
(see [3]) if for every positive number C there is a function λ ∈ C∞(Ω) with
0 ≤ λ ≤ 1, such that for all z ∈ bΩ,

Hq(λ)(z,Φ) ≥ C|Φ|2, Φ ∈ Λp,q(Ω).

Theorem 3.2. Let Ω ⊂⊂M be a weakly q-convex submanifold with C3 bound-
ary bΩ. Assume that bΩ satisfies property (P). Then there are a neighbor-
hood W of bΩ and a new C3 boundary defining function ρ such that ρ is q-
subharmonic on W .
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Proof. A computation similar to the one in Lemma 1.8 shows that there exists
a constant C1 > 0 such that for z in a neighborhood W of bΩ and sets of
vectors t1, . . . , tq that satisfy

∑n
i=1 t

j
i (Liρ) = 0 (j = 1, . . . , q) and 〈tj , tk〉z =

δjk (j, k = 1, . . . , q) on W ,

(3.1)
q∑
j=1

H1(ρ)(z, tj) ≥ −2C1|ρ(z)| − 2C1
1
|ρ(z)|

q∑
j=1

|
n∑
i=1

tji (Liρ)|2.

Set ρ0 = ϕ(ρ)eh, where ϕ and h are functions selected momentarily. Then

H1(ρ0)(z, tj) ≥ eh
{
ϕ(ρ)

[
H1(ρ)(z, tj) + |

n∑
i=1

tji (Lih)|2
]

+ ϕ′(ρ)

(
−2

ϕ(ρ)
ϕ′(ρ)

|
n∑
i=1

tii(Lih)|2 − 1
2
ϕ′(ρ)
ϕ(ρ)

|
n∑
i=1

tii(Liρ)|2
)

+ϕ′(ρ)H1(ρ)(z, tj) + ϕ′′(ρ)|
n∑
i=1

tji (Liρ)|2
}
.

(3.2)

By (3.1) and (3.2), it follows that

q∑
j=1

H1(ρ0)(z, tj) ≥ eh
ϕ

H1(ρ)(z, tj)−
q∑
j=1

|
n∑
i=1

tji (Lih)|2


+
(
ϕ′′ − 1

2
(ϕ′)2

ϕ
− 2C1ϕ

′

|ρ|

) q∑
j=1

|
n∑
i=1

tii(Lih)|2
 .

Define

ϕ(ρ) =

{
ρm, if ρ > 0
0, if ρ < 0,

where m > 2 + 4C1. Then

ϕ′′ − 1
2

(ϕ′)2

ϕ
− 2C1ϕ

′

|ρ|
= m|ρ|m−2

(
1
2
m− 1− 2C1

)
≥ 0.

Set h = keλ where λ ∈ C∞(Ω) with 0 ≤ λ ≤ 1 and k is a constant with
0 < k < 1

eλ
. Then

H1(h)(z, tj)− |
n∑
i=1

tji (Lih)|2 − 2Cm ≥ keλH1(λ)(z, tj)− 2Cm.

Choose C so large that C ≥ 2qCm
k . Since bΩ satisfies property (P), there exists

λ ∈ C∞(Ω) such that 0 ≤ λ ≤ 1 and
∑q
j=1H1(λ)(z, tj) ≥ C. Therefore

q∑
j=1

H1(h)(z, tj)−
q∑
j=1

|
n∑
i=1

tji (Lih)|2 − 2qCm ≥ 0 for z ∈W.
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Thus ρ0 is a new C∞ boundary defining function of bΩ which satisfies
q∑
j=1

H1(ρ0)(z, tj) ≥ 0 for z ∈W.

This completes the proof. �

It follows easily that the level sets of the function ρ0 give a weakly q-convex
neighborhood basis for Ω. This result gives the Mergelyan approximation prop-
erty on a compact weakly q-convex complex submanifold.

Theorem 3.3. Let Ω ⊂⊂M be a weakly q-convex submanifold with C∞ bound-
ary bΩ. Assume that bΩ satisfies property (P) and that m is a nonnegative
integer. Then O(p,r)(Ω) ∩ C∞(Ω) is dense in O(p,r)(Ω) ∩Hm

(p,r)(Ω).

Proof. By Theorem 3.2, we may assume that ρ is a C∞ boundary function of
bΩ such that for some δ0 > 0, ρ is q-subharmonic in S(δ0) = {z ∈ M ;−δ0 <
ρ(z) < δ0}. Set Ωδ = {z ∈ M ; ρ(z) < δ}. Then {Ωδ}0≤δ<δ0 is a continuous
family of diffeomorphic weakly q-convex compact complex manifolds such that
Ω = Ω0 ⊂⊂ Ωδ for all 0 < δ < δ0.

By Lemma 2.4, O(p,r)(Ω)∩C∞(p,r)(Ω) is dense in O(p,r)(Ω)∩Hm
(p,r)(Ω). Thus

we prove that O(p,r)(Ω)∩C∞(Ω) is dense in O(p,r)(Ω)∩C∞(p,r)(Ω) for the m-th
order Sobolev norm. We define Φδ = P δt (d∗δΦ), where dδ : Ωδ → Ω are diffeo-
morphisms and P δt : L2

(p,r)(Ωδ, tϕ) → L2
(p,r)(Ωδ, tϕ) ∩ O(p,r)(Ωδ) are Bergman

projections with respect to the weight e−tϕ. Then Φδ satisfies the equation
∂Φδ = 0 and

Φδ = d∗δΦ− T ∗δNδ
t Sδd

∗
δΦ,

where Nδ
t are the Neumann operators on Ωδ with respect to the weight e−tϕ.

By Theorem 2.5, for any nonnegative integer m ≥ 0,

‖T ∗δNδ
t Sδd

∗
δΦ‖m,t,Ωδ . ‖Nδ

t Sδd
∗
δf‖m+1,t,Ωδ

. ‖Sδd∗δΦ‖m+1,t,Ωδ

uniformly for small δ. Since the complex structures on Ωδ converge to the
complex structure on Ω in C∞-topology, we can get Sδd∗δΦ→ SΦ = 0, also in
C∞-topology as δ → 0. So ‖Φδ − d∗δΦ‖m,t,Ωδ converges to zero as δ → 0. Since
the diffeomorphisms dδ are continuous function of δ, d∗δΦ→ Φ in C∞-topology
on Ω. Thus there exists δ1 such that ‖d∗δΦ − Φ‖m,t,Ω < ε

2 , for each δ with
0 ≤ δ ≤ δ1. Therefore Φδ ∈ O(p,r)(Ωδ) ∩Hm

(p,r)(Ωδ) and ‖Φ − Φδ‖m,Ω < ε for
each 0 ≤ δ ≤ δ1. Hence we get the theorem. �
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