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LIMSUP RESULTS FOR THE INCREMENTS OF PARTIAL
SUMS OF A RANDOM SEQUENCE

Hee-Jin Moon and Yong-Kab Choi∗

Abstract. Let {ξj ; j ≥ 1} be a centered strictly stationary random

sequence defined by S0 = 0, Sn =
Pn

j=1 ξj and σ(n) =
p

ES2
n,

where σ(t), t > 0, is a nondecreasing continuous regularly varying func-
tion. Suppose that there exists n0 ≥ 1 such that, for any n ≥ n0

and 0 ≤ ε < 1, there exist positive constants c1 and c2 such that

c1 e−(1+ε)x2/2 ≤ P
n

|Sn|
σ(n)

≥ x
o

≤ c2 e−(1−ε)x2/2, x ≥ 1. Under some

additional conditions, we investigate some limsup results for the incre-
ments of partial sum processes of the sequence {ξj ; j ≥ 1}.

1. Introduction

Let {X, Xn, n ≥ 1} be a sequence of nondegenerate centered independent
and identically distributed (i.i.d.) random variables on an underlying proba-
bility space (Ω, F, P ) such that EX2I{|X| ≤ x} is slowly varying as x → ∞.
Put

Sn =
n∑

i=1

Xi, V 2
n =

n∑
i=1

X2
i , n ≥ 1.

Shao [18] proved the following: For arbitrary 0 < ε < 1/2, there exist 0 < δ <
1, x0 > 1 and n0 such that, for any n ≥ n0 and x0 < x < δ

√
n,

(1.1) e−(1+ε)x2/2 ≤ P

{
Sn

Vn
≥ x

}
≤ e−(1−ε)x2/2

in Remark 4.1 of the just mentioned paper [18]. Further, Csörgő et al. [4]
established a weak invariance principle related to the inequality (1.1) for self-
normalized partial sum processes under the assumption that X belongs to the
domain of attraction of the normal law.

On the other hand, consider a sequence of dependent random variables
{Yn; n ≥ 1}. The sequence {Yn; n ≥ 1} is said to be positively associated
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(PA) if, for any finite subsets A, B of {1, 2, · · · } and coordinatewise increas-
ing functions f and g, we have Cov(f(Yi; i ∈ A), g(Yj ; j ∈ B)) ≥ 0, while
{Yn; n ≥ 1} is said to be negatively associated (NA) if, for any disjoint finite
subsets A, B of {1, 2, · · · } and coordinatewise increasing functions f and g, we
have Cov(f(Yi; i ∈ A), g(Yj ; j ∈ B)) ≤ 0. The concept of PA was introduced in
[5], while that of NA in [8].

Newman and Wright [12] and Su et al. [19] obtained the central limit the-
orem (CLT) for partial sums of PA or NA random variables as follows. Let
{Yn; n ≥ 1} be a sequence of strictly stationary PA or NA random variables
with E(Y1) = 0, 0 < Var(Y1) < ∞ and Sn :=

∑n
i=1 Yi. If

(1.2) σ2 := Var(Y1) + 2
∞∑

j=2

Cov(Y1, Yj) < ∞,

then

(1.3)
Sn√

n

D−→ N(0, σ2) as n → ∞.

This suggests that, for any 0 ≤ ε < 1, there exist positive constants k1 and k2

such that

(1.4) k1 e−(1+ε)x2/2 ≤ P

{
|Sn|√

nσ
≥ x

}
≤ k2 e−(1−ε)x2/2, x ≥ 1,

for sufficiently large n. The inequality (1.4) represents upper and lower bounds
of the tail probability (cf. Lemma 2 in page 175 of [6]).

Next, consider the case of mixing random variables. For any two σ-fields A
and B in (Ω, F, P ), define the correlation

ρ(A,B) := sup
|E(V W ) − E(V )E(W )|

(EV 2)1/2(EW 2)1/2
,

where the sup is taken over all square-integrable random variables V and W
which are A-measurable and B-measurable, respectively. Let now {Yn; n ≥ 1}
be a sequence of strictly stationary random variables with E(Y1) = 0 and
0 < Var(Y1) < ∞. For any nonempty disjoint sets S and D of {1, 2, · · · },
denote

ρ(S, D) = ρ (σ[Yi; i ∈ S], σ[Yj ; j ∈ D]) ,

where σ[ ; ] is the σ-field generated by Yi’s. The ”distance” between any two
disjoint nonempty subsets S, D of {1, 2, · · · } will be denoted by dist(S, D) :=
minj∈S,k∈D ∥j − k∥, where ∥ · ∥ is the usual Euclidean norm. For each n ≥ 1,
define ρ∗n = sup ρ(S, D), where the sup is taken over all pairs of nonempty
disjoint subsets S, D of {1, 2, · · · } such that dist(S, D) ≥ n. Let again Sn =∑n

i=1 Yi and put σ2
n = Var(Sn).

Peligrad [15] proved the following result: If ρ∗n → 0 (say, ρ∗-mixing) and
σ2

n → ∞ as n → ∞, then we have (1.3) and (1.4) in this case as well under the
condition (1.2).
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In the next section, we study asymptotic properties for increments of partial
sum processes of dependent random sequences under the assumption (2.2) in
Section 2 which involves (1.1) for i.i.d. random variables and (1.4) for ρ∗-
mixing, PA or NA dependent random variables.

2. Main Results

In this paper, we develop some limit results for increments of partial sum
processes of iid random sequences given as in [3, 9, 10] to the case of dependent
random sequences as follows. Let {ξj ; j ≥ 1} be a centered strictly stationary
random sequence with Eξ2

1 = 1. Define

(2.1) S0 = 0, Sn =
n∑

j=1

ξj and σ(n) =
√

ES2
n.

Assume that σ(n) can be extended to a continuous function σ(t) of t > 0
which is nondecreasing and regularly varying with exponent α at ∞ for some
0 < α < 1.

A positive function σ(t), t > 0, is said to be regularly varying with exponent
α > 0 at b ≥ 0 if limt→b{σ(xt)/σ(t)} = xα for all x > 0.

On the basis of the result (1.4) obtained above for ρ∗-mixing, PA or NA
random fields, in this paper, we suppose that there exists n0 ≥ 1 such that, for
any n ≥ n0 and 0 ≤ ε < 1, there exist positive constants c1 and c2 such that

(2.2) c1 e−(1+ε)x2/2 ≤ P

{
|Sn|
σ(n)

≥ x

}
≤ c2 e−(1−ε)x2/2, x ≥ 1.

It is well-known that, as n → ∞, Vn/σ(n)
p−→ 1 in (1.1) and (2.2) for

centered independent random variables under the Lindeberg condition (cf. [4]),
and that σ(n)/

√
nσ → 1 holds for standard deviations of Sn in (2.2) and Sn

in (1.4) (cf. [14, 16, 20]).
Suppose that {an, n ≥ 1} is a nondecreasing sequence of positive integers

such that

(i) 1 ≤ an ≤ n.

Denote

βn =
{

2
(

log(n/an) + log log n
)}1/2

, n > e.

The main results are as follows.

Theorem 2.1. Let {ξj ; j ≥ 1} be a centered strictly stationary random
sequence with Eξ2

1 = 1 and condition (2.2), and let {an, n ≥ 1} be a nonde-
creasing sequence of positive integers satisfying condition (i). Then we have

(2.3) lim sup
n→∞

sup
0≤i≤n

sup
1≤j≤an

|Si+j − Si|
σ(an)βn

≤ 1 a.s.
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In order to obtain the opposite inequality of (2.3), the conditions on an and
{ξj ; j ≥ 1} are a little bit restricted as in Theorems 2.2 and 2.3 below.

A random sequence {ξj ; j ≥ 1} is said to be linearly negative quadrant de-
pendent (LNQD) if, for any positive number λj and disjoint subsets A, B of
Z+, the inequality
(2.4)

P

{ ∑
j∈A

λjξj ≥ x,
∑
k∈B

λkξk ≥ y

}
≤ P

{ ∑
j∈A

λjξj ≥ x

}
P

{ ∑
k∈B

λkξk ≥ y

}
holds for all real numbers x and y. This definition of LNQD was introduced
by Newman [11].

In general the NA sequence is obviously LNQD, but the LNQD sequence
does not imply NA (cf. [13], [17]).

Theorem 2.2. Let {ξj ; j ≥ 1} and {an, n ≥ 1} be as in Theorem 2.1.
Further assume that

(ii) the random sequence {ξj , j ≥ 1} is LNQD
and

(iii) lim sup
n→∞

an/n =: ρ < 1. Then we have

(2.5) lim sup
n→∞

|Sn+an − Sn|
σ(an)βn

≥ 1 a.s.

Combining Theorems 2.1 and 2.2 yields the following lim sup result.

Corollary 2.1. Under the assumptions of Theorem 2.2, we have

(2.6)
lim sup

n→∞
sup

0≤i≤n
sup

1≤j≤an

|Si+j − Si|
σ(an)βn

= 1 a.s.,

lim sup
n→∞

|Sn+an − Sn|
σ(an)βn

= 1 a.s.

Example 2.1. Let {ξj , j ≥ 1} be an NA Gaussian random sequence in
Corollary 2.1. Then the condition (2.2) is satisfied. Set an = [ log n]. Then, the
sequence {an, n ≥ 1} satisfies all the conditions of Corollary 2.1 with

βn =
{

2
(

log(n/[ log n]) + log log n
)}1/2

.

Thus we have, from (2.6),

lim sup
n→∞

sup
0≤i≤n

sup
1≤j≤[ log n]

|Si+j − Si|
σ([ log n])βn

= 1 a.s.,

lim sup
n→∞

sup
0≤i≤n

|Si+[ log n] − Si|
σ([ log n])

√
2 log n

= 1 a.s.
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3. Proofs of Theorems 2.1 and 2.2

The proof of Theorem 2.1 is based on the following Lemmas 3.1 and 3.2.

Lemma 3.1. Let D be a compact subset of Rd with the Euclidean norm ∥·∥
and let {X(t), t ∈ D} be a real-valued separable and centered strictly stationary
random field. Suppose that

0 < Γ := sup
t∈D

{E(X(t))2}1/2 < ∞ and

σ2(∥t − s∥) := E{X(t) − X(s)}2 ≤ φ2(∥t − s∥) for t ̸= s ∈ D,

where φ(h) is a nondecreasing continuous function of h > 0. Assume that, for
any 0 ≤ ε < 1, there exists a positive constant c2 such that

P

{
|X(t)|
σ(∥t∥)

≥ x

}
≤ c2 e−(1−ε)x2/2, t ∈ D, x ≥ 1.

Then, for λ > 0 and K1 > (2
√

2 + 2)
√

1 + 2d (1 − ε)−1 log 2, we have
(3.1)

P

{
sup
t∈D

|X(t)| ≥ x
(
Γ + K1

∫ ∞

0

φ(
√

d λ 2−y2
) dy

)}
≤ c

m(D)
λd

e−(1−ε)x2/2,

where c is a positive constant and m(D) denotes the Lebesgue measure of D.

Proof. For each n = 0, 1, 2, · · · , put εn = λ2−2n

, λ > 0. Denote a diameter of
D by d(D). Let {S(n)

i , i = 1, 2, · · · , Nεn(D)} be a minimal εn-net of D, where
Nεn(D) = min

{
k : D ⊂

∪ k
i=1 S

(n)
i , d(S(n)

i ) ≤ εn

}
. Then there is a positive

constant c such that Nεn(D) ≤ c m(D)
εd

n
. Set ∆n =

∪Nεn (D)
i=1

{
t
(n)
i

}
for t

(n)
i ∈ S

(n)
i .

Let K2 >
√

1 + 2d (1 − ε)−1 log 2 and K1 = (2
√

2 + 2)K2. For x ≥ 1, set

xk = xK2φ(
√

dεk−1)2k/2, k ≥ 1.

Let δk = 2(k−1)/2 for k ≥ 0. Then

2k/2 = (2
√

2 + 2)(δk − δk−1).

Thus we have
∞∑

k=1

xk = xK1

∞∑
k=1

φ(
√

dλ2−δk
2
)(δk − δk−1)

≤ xK1

∞∑
k=1

∫ δk

δk−1

φ(
√

dλ2−y2
)dy

≤ xK1

∫ ∞

0

φ(
√

dλ2−y2
)dy.
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Therefore, we conclude

P

{
sup
t∈D

|X(t)| ≥ x

(
Γ + K1

∫ ∞

0

φ
(√

dλ2−y2)
dy

)}
≤ P

{
sup
t∈D

|X(t)| ≥ xΓ +
∞∑

k=1

xk

}

≤ lim
n→∞

P

{
sup
t∈∆n

|X(t)| ≥ xΓ +
n∑

k=1

xk

}
.

Let

B0 =
{

sup
t∈∆0

|X(t)| ≥ xΓ
}

,

Bn =

{
sup
t∈∆n

|X(t)| ≥ xΓ +
n∑

k=1

xk

}
, n ≥ 1.

By induction, we have

P (Bn) = P (Bn ∩ Bn−1) + P (Bn ∩ Bc
n−1)

≤ P (B0) +
∞∑

n=1

P (Bn ∩ Bc
n−1)

and, for a large n,

P (Bn ∩ Bc
n−1)

≤ P

{ ∪
t∈∆n

{
|X(t)| ≥ xΓ +

n∑
k=1

xk

} ∩ ∩
s∈∆n−1

{
|X(s)| < xΓ +

n−1∑
k=1

xk

}}

≤ P

{ ∪
t∈∆n

∪
s∈∆n−1

∥t−s∥≤
√

d εn−1

{
|X(t)| − |X(s)| ≥ xn

}}

≤
∑
t∈∆n

∑
s∈∆n−1

∥t−s∥≤
√

d εn−1

P
{
|X(t) − X(s)| ≥ xn

}

≤ c
m(D)

εd
n

P

{
|X(t) − X(s)|

σ(∥t − s∥)
≥ xn

φ(∥t − s∥)

}
≤ c

m(D)
εd
n

P

{
|X(t)|
σ(∥t∥)

≥ xK22n/2

}
≤ c2

m(D)
λd

2d2n

exp
(
−1 − ε

2
x2K2

22n

)
≤ c22d2n

e−
1−ε
2 (K2

22n−1)e−
1−ε
2 x2 m(D)

λd
,

and
∞∑

n=1

P
(
Bn ∩ Bc

n−1

)
≤ c3

m(D)
λd

e−(1−ε)x2/2
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for some c3 > 0. On the other hand, we have

P (B0) ≤ c
m(D)

εd
0

P {|X(t)| ≥ xΓ} ≤ c2
m(D)
λd

exp
(
− (1 − ε)x2

2

)
.

This proves our Lemma 3.1. ¤

For θ > 1, let

(3.2) Dk,l = {(i, j) : 0 ≤ i ≤ θk, 1 ≤ j ≤ θl}, k ≥ 1, l ≥ 1.

From Lemma 3.1, we can estimate an upper bound of the following large
deviation probability.

Lemma 3.2. Let {ξj} and σ(·) be as in Theorem 2.1 with condition (2.2).
Then, for any 0 ≤ ε < 1, there exists a positive constant Cε depending only on
ε such that

P

{
sup

(i,j)∈Dk,l

|Si+j − Si|
σ(θl)

≥ u

}
≤ Cεθ

k−l exp
(
− (1 − ε)u2

2 + ε

)
for all u > 1.

Proof. Set

X(i, j) =
Si+j − Si

σ(θl)
, (i, j) ∈ Dk,l

and

φ(z) =
2σ(

√
2z)

σ(θl)
, z > 0.

Clearly, EX(i, j) = 0 and Γ = sup(i,j)∈Dk,l

√
EX2(i, j) = 1. For (i, j) ̸= (i′, j′)

∈ Dk,l, we have

E{X(i, j) − X(i′, j′)}2 =
1

σ2(θl)
E{Si+j − Si − (Si′+j′ − Si′)}2

≤ 2
σ2(θl)

E{(Si+j − Si′+j′)2 + (Si − Si′)2}

≤ 4
σ2(θl)

σ2
(√

2
√

(i − i′)2 + (j − j′)2
)

= φ2(∥(i, j) − (i′, j′)∥).

Also, by (2.2) and (3.2), we have

P

{
|X(i, j)|

σ(∥(i, j)∥)
≥ x

}
≤ P

{
|Si+j − Si|

σ(j)
≥ σ(1)x

}
≤ c2 e−(1−ε)x2/2

for all x ≥ 1, since σ(∥(i, j)∥) ≥ σ(1) = 1. Therefore, X(i, j) defined above
satisfies all the conditions of Lemma 3.1.
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On the other hand, noting that σ(·) is regularly varying, for any ε > 0 there
exists a constant cε > 0 such that

K1

∫ ∞

0

φ(
√

2 cε θl 2−y2
) dy < ε/8

for all l ≥ 1, where K1 > 2(
√

2+1)(1+4(1− ε)−1 log 2)1/2. Set u = x(1+ ε/8)
for x ≥ 1. Then it follows from Lemma 3.1 that

P

{
sup

(i,j)∈Dk,l

|Si+j − Si|
σ(θl)

≥ u

}
= P

{
sup

(i,j)∈Dk,l

|X(i, j)| ≥ u

}
≤ P

{
sup

(i,j)∈Dk,l

|X(i, j)| ≥ x

(
1 + K1

∫ ∞

0

φ(
√

2 cεθ
l 2−y2

) dy

)}
≤ Cεθ

k−l exp
(
− (1 − ε)u2

2 + ε

)
,

where Cε is a positive constant. This completes the proof of Lemma 3.2. ¤

Proof of Theorem 2.1. For θ > 1, let

Ak,l = {n : θk−1 ≤ n ≤ θk, θl−1 ≤ an ≤ θl}, k ≥ 1, l ≥ 1.

By condition (i), we have 1 ≤ l ≤ k − 1 and

(3.3)

inf
n∈Ak,l

βn ≥
{
2 log

(
(θk−1/θl) log θk−1

)}1/2

≥ θ−1
{
2 log

(
(θk/θl) log θk

)}1/2

=: θ−1βkl

for all large k. Hence, by (i) and the regularity of σ(·),

(3.4)

lim sup
n→∞

sup
0≤i≤n

sup
1≤j≤an

|Si+j − Si|
σ(an)βn

≤ lim sup
k→∞

sup
1≤l≤k−1

sup
n∈Ak,l

sup
0≤i≤n

sup
1≤j≤an

|Si+j − Si|
σ(an)βn

≤ θ2 lim sup
k→∞

sup
1≤l≤k−1

sup
0≤i≤θk

sup
1≤j≤θl

|Si+j − Si|
σ(θl)βkl

.
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Now, applying Lemma 3.2, it follows that, for any small ε > 0, there exists
Cε > 0 such that

P

{
sup

1≤l≤k−1
sup

0≤i≤θk

sup
1≤j≤θl

|Si+j − Si|
σ(θl)βkl

≥
√

1 + 2ε

}

≤
k−1∑
l=1

P
{

sup
0≤i≤θk

sup
1≤j≤θl

|Si+j − Si|
σ(θl)

≥
√

1 + 2ε βkl

}
≤ Cε

k−1∑
l=1

θk−l exp
(
− 2 + 4ε

2 + ε
(1 − ε) log(θk−l log θk)

)
≤ Cε k−1−ε′

for all large k, where ε′ = ε/(4 + 2ε). By the Borel-Cantelli lemma, we get

lim sup
k→∞

sup
1≤l≤k−1

sup
0≤i≤θk

sup
1≤j≤θl

|Si+j − Si|
σ(θl)βkl

≤ 1 a.s.

Combining this inequality with (3.4) yields (2.3) by the arbitrariness of θ. This
completes the proof. ¤

The following Lemma 3.3 is a well-known version of the second Borel-Cantelli
lemma, which is used to prove Theorem 2.2.

Lemma 3.3. Let {Ak, k ≥ 1} be any sequence of events in (Ω,F , P ). If

(a)
∞∑

k=1

P (Ak) = ∞

and

(b) lim inf
n→∞

∑
1≤j<k≤n

P (Aj ∩ Ak) − P (Aj)P (Ak)( ∑n
j=1 P (Aj)

)2 ≤ 0,

then P (lim supk→∞ Ak) = 1.

Proof of Theorem 2.2. Let {nk}∞k=1 be a subsequence of {n}∞n=1 such that n1 =
1 and nk = nk−1 + ank−1 (k ≥ 2), due to (iii). Set

Zk =
Snk+ank

− Snk

σ(ank
)

and Ak = {Zk > (1 − ε)βnk
}

for 0 < ε < 1. Then, by (2.2),
∞∑

k=1

P (Ak) ≥ c1

∞∑
k=1

exp
(
− (1 + ε)(1 − ε)2 log

(
nk log nk

ank

))

≥ c1

∞∑
k=1

nk+1 − nk

nk log nk
≥ c1

∞∑
k=1

∫ nk+1

nk

1
x log x

dx = ∞.
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Now, it suffices to show that condition (b) of Lemma 3.3 is satisfied. By the
definition of {nk}, two sets {ni + 1, ni + 2, · · · , ni + ani} and {nj + 1, nj +
2, · · · , nj + anj} for i < j, are disjoint. So, by condition (ii),

P (Ai ∩ Aj)

= P

{
ξni+1 + · · · + ξni+ani

σ(ani)βni

> 1 − ε,
ξnj+1 + · · · + ξnj+anj

σ(anj )βnj

> 1 − ε

}
≤ P

{
ξni+1 + · · · + ξni+ani

σ(ani)βni

> 1 − ε

}
P

{
ξnj+1 + · · · + ξnj+anj

σ(anj )βnj

> 1 − ε

}
= P (Ai)P (Aj).

This implies the condition (b) of Lemma 3.3 and hence (2.5) holds true. ¤
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