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LIMSUP RESULTS FOR THE INCREMENTS OF PARTIAL
SUMS OF A RANDOM SEQUENCE

HEE-JIN MOON AND YONG-KAB CHOI*

ABSTRACT. Let {£;;7 > 1} be a centered strictly stationary random
sequence defined by So = 0, S, = Z?:lﬁj and o(n) = /ES2,
where o(t), t > 0, is a nondecreasing continuous regularly varying func-
tion. Suppose that there exists ng > 1 such that, for any n > ng
and 0 < e < 1, there exist positive constants ¢; and c2 such that

ep e~ (1+e)a?/2 < p{%z% > g;} < cpe=(1792%/2 4 > 1. Under some
additional conditions, we investigate some limsup results for the incre-
ments of partial sum processes of the sequence {£;;5 > 1}.

1. Introduction

Let {X, X,,,n > 1} be a sequence of nondegenerate centered independent
and identically distributed (i.i.d.) random variables on an underlying proba-
bility space (2, F, P) such that EX2I{|X| < z} is slowly varying as z — oo.

Put . .
Sp=> X;, V2= X} n>L
=1 =1

Shao [18] proved the following: For arbitrary 0 < ¢ < 1/2, there exist 0 < 6 <
1, 2o > 1 and ng such that, for any n > ng and z¢ < z < d\/n,

(1.1) e—(1+5)x2/2 < P{Sn > l‘} < e—(l—e)xz/Q
Vi
in Remark 4.1 of the just mentioned paper [18]. Further, Csorgd et al. [4]
established a weak invariance principle related to the inequality (1.1) for self-
normalized partial sum processes under the assumption that X belongs to the
domain of attraction of the normal law.
On the other hand, consider a sequence of dependent random variables
{Y,;n > 1}. The sequence {Y,;n > 1} is said to be positively associated
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(PA) if, for any finite subsets A, B of {1,2,---} and coordinatewise increas-
ing functions f and g, we have Cov(f(Y;;i € A), g(Y;;7 € B)) > 0, while
{Y,;n > 1} is said to be negatively associated (NA) if, for any disjoint finite
subsets A, B of {1,2,---} and coordinatewise increasing functions f and g, we
have Cov(f(Yi;i € A),g(Y;;j € B)) <0. The concept of PA was introduced in
[5], while that of NA in [8].

Newman and Wright [12] and Su et al. [19] obtained the central limit the-
orem (CLT) for partial sums of PA or NA random variables as follows. Let
{Y,;n > 1} be a sequence of strictly stationary PA or NA random variables
with E(Y1) =0,0 < Var(Y;) < oo and S, := > ., V;. If

(1.2) 0% := Var(Y1) + 2 _ Cov(¥1,Y;) < o0,
j=2
then
Sn D 2
(1.3) — — N(0, 07) as mn — 00.

Vn
This suggests that, for any 0 < e < 1, there exist positive constants k; and ks
such that

S
(14) kl 67(1+8)x2/2 < P {\|/7%Lo|' > JJ} < k2 e*(lfe):xz/Q, x> 1’
for sufficiently large n. The inequality (1.4) represents upper and lower bounds
of the tail probability (cf. Lemma 2 in page 175 of [6]).
Next, consider the case of mixing random variables. For any two o-fields A
and B in (2, F, P), define the correlation

[EVW) — E(V)E(W)|

(EVQ)l/Q(EWZ)l/Q ’
where the sup is taken over all square-integrable random variables V' and W
which are A-measurable and B-measurable, respectively. Let now {Y,,;n > 1}
be a sequence of strictly stationary random variables with E(Y;) = 0 and

0 < Var(Y1) < oo. For any nonempty disjoint sets S and D of {1,2,---},
denote

p(A, B) := sup

p(S,D) = p(o[Yisi € S], o[Y;j € D]),

where o[; ] is the o-field generated by Y;’s. The ”distance” between any two
disjoint nonempty subsets S, D of {1,2,---} will be denoted by dist(S, D) :=
minjeg kep ||j — k||, where || - || is the usual Euclidean norm. For each n > 1,
define p! = sup p(S, D), where the sup is taken over all pairs of nonempty
disjoint subsets S, D of {1,2,---} such that dist(S,D) > n. Let again S, =
>, Y; and put 02 = Var(S,,).

Peligrad [15] proved the following result: If pX — 0 (say, p*-mizing) and
02 — 00 as n — oo, then we have (1.3) and (1.4) in this case as well under the
condition (1.2).
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In the next section, we study asymptotic properties for increments of partial
sum processes of dependent random sequences under the assumption (2.2) in
Section 2 which involves (1.1) for ii.d. random variables and (1.4) for p*-
mixing, PA or NA dependent random variables.

2. Main Results

In this paper, we develop some limit results for increments of partial sum
processes of iid random sequences given as in [3, 9, 10] to the case of dependent
random sequences as follows. Let {{;;j > 1} be a centered strictly stationary
random sequence with F¢7 = 1. Define

(2.1) So=0, Sy =) & and o(n)=+/ES2.
j=1

Assume that o(n) can be extended to a continuous function o(¢) of ¢ > 0
which is nondecreasing and regularly varying with exponent « at oo for some
O0<a<l

A positive function o(t), t > 0, is said to be regularly varying with exponent
a>0atb>0if lim;,{o(xt)/o(t)} = z* for all z > 0.

On the basis of the result (1.4) obtained above for p*-mixing, PA or NA
random fields, in this paper, we suppose that there exists ng > 1 such that, for
any n > ng and 0 < e < 1, there exist positive constants ¢; and ¢y such that

(2.2) cretee*/2 < p {'S"| > x} <ege(1mT/2 g s
a(n)

It is well-known that, as n — oo, V,/o(n) == 1 in (1.1) and (2.2) for
centered independent random variables under the Lindeberg condition (cf. [4]),
and that o(n)/y/noc — 1 holds for standard deviations of S,, in (2.2) and S,
n (1.4) (cf. [14, 16, 20]).

Suppose that {a,,n > 1} is a nondecreasing sequence of positive integers
such that

(i) 1<a, <n.

Denote
1/2
Bn = {2(log(n/an) + loglogn)} , n>e.
The main results are as follows.

Theorem 2.1. Let {§;;j > 1} be a centered strictly stationary random
sequence with E€? = 1 and condition (2.2), and let {a,,n > 1} be a nonde-
creasing sequence of positive integers satisfying condition (i). Then we have

S S,
(2.3) limsup sup sup M

<1 a.s.
n—oo 0<i<n 1<j<a, J(an)ﬁn
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In order to obtain the opposite inequality of (2.3), the conditions on a,, and
{&;;7 > 1} are a little bit restricted as in Theorems 2.2 and 2.3 below.

A random sequence {&;;j > 1} is said to be linearly negative quadrant de-
pendent (LNQD) if, for any positive number A; and disjoint subsets A, B of
Z, the inequality
(2.4)

P{Z/\jfj >z, ) Mk Zy} SP{Z/\jfj Zx}P{Z/\kék Zy}
jEA kEB jea kEB

holds for all real numbers x and y. This definition of LNQD was introduced
by Newman [11].

In general the NA sequence is obviously LNQD, but the LNQD sequence
does not imply NA (cf. [13], [17]).

Theorem 2.2. Let {{;;j > 1} and {an,n > 1} be as in Theorem 2.1.
Further assume that

(ii) the random sequence {§;,j > 1} is LNQD
and

(iii) limsupa,/n =:p < 1. Then we have

n—oo

(2.5) lim sup [Sn+an = Sul

>1 a.s.
n—o00 O'(Cln)ﬂn o

Combining Theorems 2.1 and 2.2 yields the following lim sup result.

Corollary 2.1. Under the assumptions of Theorem 2.2, we have

) Sitj — S
limsup sup sup M =1 a.s.,
n—oo 0<i<nl1<j<an, O(n)Bn

. |Sn+a _Sn|
lim sup =
n—oo  0(an)Bn

(2.6)
1 a.s.

Example 2.1. Let {{;,j7 > 1} be an NA Gaussian random sequence in
Corollary 2.1. Then the condition (2.2) is satisfied. Set a,, = [logn]. Then, the
sequence {a,, n > 1} satisfies all the conditions of Corollary 2.1 with

1/2
Bn = {2 (log(n/[logn]) + loglogn)} .
Thus we have, from (2.6),

i |Sij — Sil
imsup sup sup ———— = a.s.,
n—oo 0<i<n 1<j<[logn| U([IOgnDﬁn

|Sit[10gn] — Sil

limsup sup =1 a.s.

nooo o<i<n o([logn])v2logn
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3. Proofs of Theorems 2.1 and 2.2

The proof of Theorem 2.1 is based on the following Lemmas 3.1 and 3.2.

Lemma 3.1. Let D be a compact subset of R? with the Buclidean norm ||-||
and let {X (t), t € D} be a real-valued separable and centered strictly stationary
random field. Suppose that

0 < T :=sup{E(X(t)*}*? < oo and
teD

o?(l[t = sl) == B{X(t) - X(8)}* < @*(t —s]) for t#seD,

where @(h) is a nondecreasing continuous function of h > 0. Assume that, for
any 0 < e < 1, there exists a positive constant co such that

P{ [X(t) > x} < e (3_(1_5)z2/27 teD, x>1.
a(lltl)
Then, for A >0 and K1 > (2v/2+2)y/1 +2d (1 — )~ 'log2, we have
(3.1)
o0
D
P{ Sup|X(t)| > l’(F—f—Kl/ S@(\/a)\2—y2)dy)} < Cﬂd)e—(l—dw?/%
0

teh A

where ¢ is a positive constant and m(D) denotes the Lebesgue measure of D.

Proof. For each n = O, 1,2,---, put £, = A272", A > 0. Denote a diameter of
D by d(D). Let {S ™ i=1,2- N, (D)} be a minimal €,-net of D, where
N, (D) = min {k : ]D C Ul 1 S ") (S(n) < €, }. Then there is a positive
constant ¢ such that N, (D) < ¢ 2. Set A, Ui\ff ® {tg" } for tz(-") € Si(n .
Let Ko > /1+2d(1—¢)~ 1log2 and K, = (22 +2)K,. For 2 > 1, set

T = xK2¢(\/a€k71)2k/2, k > 1.
Let 6, = 26=1/2 for k> 0. Then
282 — (2v/2 4 2)(8), — Oi—1).

Thus we have

Zl‘k—mKlz(p f)\Q 6’“ )((5k—(5k 1)

<xKlz/6k (Vax2—v")dy

Ok—1

< ok, / p(Var2 )dy
0
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Therefore, we conclude

P {sup X (t) >z (r + K, /Ooo w(ﬁAz—yz)dy) }

teh

<P{sup|X( )| >xF+Zxk}

k=1
n
< lim P sup | X (t)] >$F+Z$k

Let
Bo = {sup X (t)] > xr},

teAg
B, =< sup |X(t )|>xI‘+Zxk n>1.
teA, k=1

By induction, we have
P(B,)=P(B,NBp-1)+ P(B,NB._4)

P(Bo)+ZPB NBE_,)

and, for a large n,
P(B,NB;_4)

{U {X >33F+Za:k}ﬂ N {|X |<mr+nzlxk}}

teA sEA, _1 k=1

P{U U {X<t>—|x<s>|2xn}}

teA, SEAL 1
lt—s|I<Vden_1

<Y Y PUX(®) - X()| =}

teA, SEA, 1
lt—sl|<Vden—1

D) (X)X

e P{ (e sl ><p(||t—S||)}

m(D X(t m(D n
e

n
tE (K§2"71)671%5m2 m(D)
A

IN

Sx2K222n)
2

n o _
< 2%

and
> m(D) 4.2
E B N B;_ 1)§C3TQ (1—e)z?/2



LIMSUP RESULTS FOR PARTIAL SUMS OF A RANDOM SEQUENCE

for some c3 > 0. On the other hand, we have
m(D)
d

P(By) < _ :

This proves our Lemma, 3.1.
For 6 > 1, let
(3.2) Dy, ={(i,j):0<i<OF1<j<0}, k>1, 1>1.

PX(0)]2 a7} < 0™ exp <<16>x2> .

257

From Lemma 3.1, we can estimate an upper bound of the following large

deviation probability.

Lemma 3.2. Let {{;} and o(-) be as in Theorem 2.1 with condition (2.2).
Then, for any 0 < e < 1, there exists a positive constant C. depending only on

€ such that

ivj — Si 1 —¢)u?

P{ sup [Sies = S - Sil > u} < Cgek*lexp(—i( eu )
(i,j)GDkyl 0(9 ) 2+E

for all u > 1.
Proof. Set

o St =S o

X(L]):W? (/Laj)E]D)k:,l
and
_ 20(V2z)

Clearly, EX(i,7) = 0 and I' = sup; jyep, , V EX?(4,j) = 1. For (4, ) # (i', ')

€ Dy 1, we have

BUX(.5) = X)) = s BlSiey = i (Sv1y = S0P
< 02?01) {(Siy; — Si’+j’)2 +(S; — Sir)*}
< 1 (\[\/’sz jfj’)2)

a2’
= (16,9) = (", 3)])-

Also, by (2.2) and (3.2), we have

a(ll(@ D) a(j)

for all x > 1, since o(||(¢,7)||) > o(1) = 1. Therefore, X(i,7) defined above

satisfies all the conditions of Lemma 3.1.
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On the other hand, noting that o(-) is regularly varying, for any ¢ > 0 there
exists a constant ¢, > 0 such that

Kl/ e(V2c. 0 2*y2) dy <e/8
0

for all I > 1, where K7 > 2(v24+1)(1+4(1 —¢)~'log2)'/2. Set u = (1 +¢/8)
for x > 1. Then it follows from Lemma 3.1 that

Sit; —Si .
P{ sup 'j;((,l)m}zp{(sup |X<m>|2u}

(4,5)€Dx 1 i,5) €Dy 1
o0 2
SP{ sup |X(i,j)|2x(1+K1/ o(V2e 027 )dy) }
(4,5)EDg 1 0
B 1 —e)u?
< Cet* leXp(‘ (2+35>

where C; is a positive constant. This completes the proof of Lemma 3.2. [

Proof of Theorem 2.1. For 6 > 1, let
Apy={n:0"1<n<o* 071 <a, <0}, k>1,1>1

By condition (i), we have 1 <! <k —1 and

inf (3, > {2log (61 /6) log 0*~1)} /2

nEAL,
> 61 {21log ((6*/6") log 6") }1/2
=: 07" B

for all large k. Hence, by (i) and the regularity of o(-),

. S...—8S.
limsup sup sup M
n—oo 0<i<n 1<j<an U(an)/@n

. |Si+; — Sl
(3.4) <limsup sup sup sup Ssup —
k—oo 1<I<k—1neh,,; 0<i<n1<j<an o(an)Bn
|Sitj — Sil

< #*limsup sup sup  sup 7 .
k—oo 1<I<k—10<i<fk 1<j<0! o(0") B
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Now, applying Lemma 3.2, it follows that, for any small € > 0, there exists
C. > 0 such that

Sivi —S;
P{ sup  sup sup |+]2\/1+25}

1<I<k—10<i<@k 1<;5<0! a(6") Br

k-1
< ZP{ sup  sup Sis — i > \/1—&-725@1}
=1

0<i<Ok 1<j<! 0(91)

<C kil 08~ exp ( R 45(1 —¢)log(0*'log 9’“))
— 2+e¢
S CE k,—l—El

for all large k, where &’ = /(4 4+ 2¢). By the Borel-Cantelli lemma, we get

S; S;
limsup sup sup sup |1+37|

<1 a.s.
koo 1<i<k—10<i<ot1<j<ol 0(0")Bri

Combining this inequality with (3.4) yields (2.3) by the arbitrariness of 6. This
completes the proof. O

The following Lemma 3.3 is a well-known version of the second Borel-Cantelli
lemma, which is used to prove Theorem 2.2.

Lemma 3.3. Let {Ay, k> 1} be any sequence of events in (Q, F, P). If

> P(Ay) =
k=1

and
(b) liminf > P(A; 0 Ax) = P(A4;) P(Ar)

j
1<j<k<n (X0, P(4)°
then P(limsupy,_, ., Ax) = 1.

<0

)

Proof of Theorem 2.2. Let {ny}32, be a subsequence of {n}>2, such that ny =
1 and ng = nk—1 + an,_, (k> 2), due to (iii). Set

Snk-i-ank - Snk
o(an,)
for 0 < e < 1. Then, by (2.2),

ZPAk >clzexp< 1+€)(1—€)210g<nk10gnk)>

An,,

Zr = and Ay ={Zr > (1 —¢)Bn,}

N41

Ng+1 — nk
> = 00.
“ Z ng log ng =z Z/ xlogm >

=1
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Now, it suffices to show that condition (b) of Lemma 3.3 is satisfied. By the
definition of {ny}, two sets {n; + 1,n; +2,--- ,n; + an, } and {n; + 1,n,; +

2

,or

©,nj + ap, } for i < j, are disjoint. So, by condition (ii),
P(AZ N AJ)
- P{&HH ot b, >1-—c¢, Sng b1+ F Loy b, 1 5}
o (an,)Bn, 0 (an;)Bn,
n; + -+ &nitan, g'ﬂj ++fn1 [y
gP{gl“ £1+"‘>15}P{ i . ’>15}
U(am)ﬁm U(an )ﬁnJ
= P(A;)P(4;).

This implies the condition (b) of Lemma 3.3 and hence (2.5) holds true. ]
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