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FIXED POINT THEORY IN FRÉCHET SPACES FOR
MÖNCH INWARD AND CONTRACTIVE URYSOHN TYPE

OPERATORS

Donal O’Regan

Abstract. We present new fixed point theorems for inward and weakly
inward Urysohn type maps. Also we discuss Mönch Kakutani and con-
tractive type maps.

1. Introduction

This paper presents new fixed point theorems for multivalued maps of Ury-
sohn type between Fréchet spaces. In particular we present new fixed point
theorems for weakly inward Kakutani maps and new Leray-Schauder alter-
natives for inward acyclic and approximable Urysohn type maps and weakly
inward Kakutani maps in Fréchet spaces. Also we obtain an applicable Leray-
Schauder alternative in Fréchet spaces for Kakutani Mönch type operators.
Finally contractive maps will also be discussed. The proofs rely on fixed point
theory in Banach spaces and viewing a Fréchet space as the projective limit of
a sequence of Banach spaces. In particular our theory is partly motivated by
the papers [1, 2, 4, 5, 11].

For the remainder of this section we present some definitions and some known
facts. Let X and Y be subsets of Hausdorff topological vector spaces E1 and
E2 respectively. We will look at maps F : X → K(Y ); here K(Y ) denotes
the family of nonempty compact subsets of Y . We say F : X → K(Y )
is Kakutani if F is upper semicontinuous with convex values. A nonempty
topological space is said to be acyclic if all its reduced C̆ech homology groups
over the rationals are trivial. Now F : X → K(Y ) is acyclic if F is upper
semicontinuous with acyclic values.

Given two open neighborhoods U and V of the origins in E1 and E2

repectively, a (U, V )–approximate continuous selection of F : X → K(Y ) is a
continuous function s : X → Y satisfying

s(x) ∈ (F [(x + U) ∩ X] + V ) ∩ Y for every x ∈ X.
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We say F : X → K(Y ) is approximable if it is a closed map and if its restriction
F |K to any compact subset K of X admits a (U, V )–approximate continuous
selection for every open neighborhood U and V of the origins in E1 and E2

repectively.

Let Q be a subset of a Hausdorff topological space X and x ∈ X. The
inward set IQ(x) is defined by

IQ(x) = {x + r (y − x) : y ∈ Q, r ≥ 0}.

If Q is convex and x ∈ Q then

IQ(x) = x + {r (y − x) : y ∈ Q, r ≥ 1}.

A mapping F : Q → 2X (here 2X denotes the family of all nonempty subsets
of X) is said to be weakly inward with respect to Q if F (x) ∩ IQ(x) ̸= ∅ for
x ∈ Q.

Existence in Section 2 is based on the following continuation theory for
AcAp maps. A map is said to be AcAp if it is either acyclic or approximable.
In our next definitions E is a Banach space, C a closed convex subset of E
and U0 a bounded open subset of E. We will let U = U0 ∩ C and 0 ∈ U . In
our definitions U and ∂U denote the closure and the boundary of U in C
respectively.

Definition 1.1. We say F ∈ A(U, E) if F : U → K(E) is a closed AcAp
countably condensing map with F (x) ⊆ IC(x) for x ∈ U .

Definition 1.2. A map F ∈ A∂U (U,E) if F ∈ A(U, E) with x /∈ F x for
x ∈ ∂U .

Definition 1.3. A map F ∈ A∂U (U,E) is essential in A∂U (U, E) if for every
G ∈ A∂U (U,E) with G|∂U = F |∂U there exists x ∈ U with x ∈ Gx.

The following result was established in [10].

Theorem 1.1. Let E, C, U0, U be as above, 0 ∈ U and F ∈ A(U, E) with

(1.1) x /∈ λ Fx for x ∈ ∂U and λ ∈ (0, 1].

Then F is essential in A∂U (U, E).

Remark 1.1. The proof of Theorem 1.1 is based on the fact that the zero map
is essential in A∂U (U, E) and F ∼= 0 in A∂U (U, E).

If the map F in Theorem 1.1 was Kakutani then in fact we can obtain more
general results. The following result can be found in [6, 9].

Theorem 1.2. Let E be a Banach space and C a closed bounded convex
subset of E. Suppose F : C → CK(E) is a upper semicontinuous condensing
map with F (x) ∩ IC(x) ̸= ∅ for x ∈ C; here CK(E) denotes the family of
nonempty convex compact subsets of E. Then F has a fixed point in E.
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Again in our next definitions E is a Banach space, C a closed convex subset
of E and U0 a bounded open subset of E. We will let U = U0 ∩ C.

Definition 1.4. We say F ∈ K(U,E) if F : U → CK(E) is a upper semi-
continuous condensing map with F (x) ∩ IC(x) ̸= ∅ for x ∈ U .

Definition 1.5. A map F ∈ K∂U (U, E) if F ∈ K(U, E) with x /∈ F x for
x ∈ ∂U .

Definition 1.6. A map F ∈ K∂U (U, E) is essential in K∂U (U, E) if for every
G ∈ K∂U (U,E) with G|∂U = F |∂U there exists x ∈ U with x ∈ Gx.

Definition 1.7. Two maps F,G ∈ K∂U (U, E) are homotopic in K∂U (U,E),
written F ∼= G in K∂U (U, E), if there exists a upper semicontinuous condens-
ing map N : U × [0, 1] → CK(E) such that Nt(u) = N(t, u) : U → CK(E)
belongs to K∂U (U, E) for each t ∈ [0, 1] and N0 = F , N1 = G.

The topological transversality theorem for weakly inward Kakutani maps
was established in [9].

Theorem 1.3. Let E, C, U0 and U be as above. Suppose F and G are maps
in K∂U (U,E) with F ∼= G in K∂U (U, E). Then F is essential in K∂U (U, E)
iff G is essential in K∂U (U, E).

Remark 1.2. If the map F in Definition 1.4 (and throughout) was countably
condensing instead of condensing then we have to assume F (x) ∩ IC(x) ̸= ∅
for x ∈ U instead of F (x) ∩ IC(x) ̸= ∅ for x ∈ U in Definition 1.4 (and
throughout); see [10] for details.

Remark 1.3. If 0 ∈ U then the zero map is essential in K∂U (U,E); see [10]
for details (the proof uses Theorem 1.2).

The following Krasnoselskii type result was established in [9] (there is also
an obvious analogue for countably condensing maps if we note Remark 1.2).

Theorem 1.4. Let E be a Banach space, C a closed convex subset of E, W
and V are open bounded subsets of E with U1 = W ∩ C and U2 = V ∩ C.
Suppose 0 ∈ U1 ⊆ U1 ⊆ U2 and F : U2 → CK(E) a upper semicontinuous,
condensing, weakly inward with respect to C (i.e. F (x) ∩ IC(x) ̸= ∅ for
x ∈ U2) map. In addition assume the following conditions are satisfied:

(1.2) x /∈ λF x for x ∈ ∂U2 and λ ∈ [0, 1]

(1.3) ∃ v ∈ C \ {0} with x /∈ F x + δ v for δ ≥ 0 and x ∈ ∂U1

(1.4)


F ( . ) + µ v : U1 → CK(E) is a weakly inward with respect
to C (i.e. [F (x) + µ v] ∩ IC(x) ̸= ∅ for x ∈ U1)
map for all µ ≥ 0.

Then F has a fixed point in U2 \U1.
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In this paper we also discuss Mönch type compactness conditions instead
of countable condensing. In Section 2 one of our results will be based on a
Leray–Schauder alternative for Kakutani Mönch maps [1, 13] which we state
here for the convenience of the reader.

Theorem 1.5. Let K be a closed convex subset of a Banach space X, U a
relatively open subset of K, x0 ∈ U and suppose F : U → CK(K) is a upper
semicontinuous map. Also assume the following conditions hold:

(1.5)
{

M ⊆ U, M ⊆ co ({x0} ∪ F (M)) with M = C and
C ⊆ M countable, implies M is compact

and

(1.6) x /∈ (1 − λ) {x0} + λF x for x ∈ U \U and λ ∈ (0, 1).

Then there exists a compact set
∑

of U and a x ∈
∑

with x ∈ F x.

Also in Section 2 we will discuss inward Kakutani Mönch maps. In our next
definition and theorem E is a Banach space, C a closed convex subset of E
and U0 a bounded open subset of E. We will let U = U0 ∩ C and 0 ∈ U . In
our definitions U and ∂U denote the closure and the boundary of U in C
respectively.

Definition 1.8. We say F ∈ KM(U, E) if F : U → CK(E) is upper semi-
continuous, F (U) is bounded, F (x) ⊆ IC(x) for x ∈ U , and if D ⊆ E with
D ⊆ co ({0} ∪ F (D ∩ U)) and D = B with B ⊆ D countable then D ∩ U is
compact.

The following theorem [2, 12] will be needed in Section 2.

Theorem 1.6. Let E, C, U0, U be as before Definition 1.8, 0 ∈ U and F ∈
KM(U,E) with

(1.7) x /∈ λ Fx for x ∈ ∂U and λ ∈ (0, 1)

holding. Then there exists a compact set
∑

of U and a x ∈
∑

with x ∈ F x.

Finally in Section 2 we consider contractive type maps. We recall the fol-
lowing two results from the literature [3, 8].

Theorem 1.7 ([8, Theorem 3.9]). Let U be an open subset in a Banach space
(X, ∥ . ∥) and F : U → X. Assume 0 ∈ U and suppose there exists a continu-
ous nondecreasing function ϕ : [0,∞) → [0,∞) satisfying ϕ(z) < z for z > 0
such that ∥F x − F y∥ ≤ ϕ(∥x − y∥) for all x, y ∈ U . In addition assume
F (U) is bounded and x ̸= λF x for x ∈ ∂U and λ ∈ (0, 1). Then F has a
fixed point in U .

Theorem 1.8 ([3, Theorem 2.3 (and Remark 2.1)]). Let U be an open sub-
set in a Banach space (X, ∥ . ∥) and F : U → C(X) a closed map (i.e. has
closed graph); here C(X) denotes the family of nonempty closed subsets of
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X. Assume 0 ∈ U and suppose there exists a continuous strictly increas-
ing function ϕ : [0,∞) → [0,∞) satisfying ϕ(z) < z for z > 0 such that
H(F x, F y) ≤ ϕ(∥x − y∥) for all x, y ∈ U . In addition assume the following
conditions hold:

(1.8)
{

Φ : [0,∞) → [0,∞), given by Φ(x) = x − ϕ(x),
is strictly increasing

(1.9) Φ−1(a) + Φ−1(b) ≤ Φ−1(a + b) for a, b ≥ 0

(1.10)
∞∑

i=0

ϕi(t) < ∞ for t > 0

(1.11)
∞∑

i=1

ϕi(x − ϕ(x)) ≤ ϕ(x) for x > 0

(1.12) F (U) is bounded

and

(1.13) x /∈ λF x for x ∈ ∂U and λ ∈ (0, 1).

Then F has a fixed point in U .

Remark 1.4. In fact the assumption that F is closed can be removed in Theo-
rem 1.8. In [3, Theorem 2.3] we assumed a more general contractive condition
and the condition is needed there.

Let (X, d) be a metric space and S a nonempty subset of X. For x ∈ X
let d(x, S) = infy∈S d(x, y). Now suppose G : S → 2X . Then G is said to be
hemicompact if each sequence {xn}n∈N in S has a convergent subsequence
whenever d(xn, G (xn)) → 0 as n → ∞.

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of
locally convex spaces. For each α ∈ I, β ∈ I for which α ≤ β let πα,β : Eβ →
Eα be a continuous map. Then the set{

x = (xα) ∈
∏
α∈I

Eα : xα = πα,β(xβ) ∀α, β ∈ I, α ≤ β

}

is a closed subset of
∏

α∈I Eα and is called the projective limit of {Eα}α∈I

and is denoted by lim← Eα (or lim← {Eα, πα,β} or the generalized intersection
[9, pp. 439] ∩α∈I Eα.)
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2. Fixed point theory in Fréchet spaces

Let E = (E, {| · |n}n∈N ) be a Fréchet space with the topology generated by
a family of seminorms {| · |n : n ∈ N}; here N = {1, 2, ....}. We assume that
the family of seminorms satisfies

(2.1) |x|1 ≤ |x|2 ≤ |x|3 ≤ ....... for every x ∈ E.

A subset X of E is bounded if for every n ∈ N there exists rn > 0 such
that |x|n ≤ rn for all x ∈ X. For r > 0 and x ∈ E we denote B(x, r) =
{y ∈ E : |x − y|n ≤ r ∀n ∈ N}. To E we associate a sequence of Banach
spaces {(En, | · |n)} described as follows. For every n ∈ N we consider the
equivalence relation ∼n defined by

(2.2) x ∼n y iff |x − y|n = 0.

We denote by En = (E /∼n, | · |n) the quotient space, and by (En, | · |n) the
completion of En with respect to | · |n (the norm on En induced by | · |n
and its extension to En are still denoted by | · |n). This construction defines a
continuous map µn : E → En. Now since (2.1) is satisfied the seminorm | · |n
induces a seminorm on Em for every m ≥ n (again this seminorm is denoted
by | · |n). Also (2.2) defines an equivalence relation on Em from which we
obtain a continuous map µn,m : Em → En since Em /∼n can be regarded as
a subset of En. Now µn,m µm,k = µn,k if n ≤ m ≤ k and µn = µn,m µm if
n ≤ m. We now assume the following condition holds:

(2.3)
{

for each n ∈ N, there exists a Banach space (En, | · |n)
and an isomorphism (between normed spaces) jn : En → En.

Remark 2.1. (i). For convenience the norm on En is denoted by | · |n.
(ii). In our applications En = En for each n ∈ N .
(iii). Note if x ∈ En (or En) then x ∈ E. However if x ∈ En then x is not
necessaily in E and in fact En is easier to use in applications (even though
En is isomorphic to En). For example if E = C[0,∞), then En consists of the
class of functions in E which coincide on the interval [0, n] and En = C[0, n].

Finally we assume

(2.4)
{

E1 ⊇ E2 ⊇ ........ and for each n ∈ N,
|jn µn,n+1 j−1

n+1 x|n ≤ |x|n+1 ∀ x ∈ En+1

(here we use the notation from [9] i.e. decreasing in the generalized sense). Let
lim← En (or ∩∞

1 En where ∩∞
1 is the generalized intersection [9]) denote the

projective limit of {En}n∈N (note πn,m = jn µn,m j−1
m : Em → En for m ≥ n)

and note lim← En
∼= E, so for convenience we write E = lim← En.

For each X ⊆ E and each n ∈ N we set Xn = jn µn(X), and we let Xn,
intXn and ∂Xn denote respectively the closure, the interior and the boundary
of Xn with respect to | · |n in En. Also the pseudo-interior of X is defined
by

pseudo − int (X) = {x ∈ X : jn µn(x) ∈ Xn \ ∂Xn for every n ∈ N}.
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The set X is pseudo-open if X = pseudo − int (X). For r > 0 and x ∈ En

we denote Bn(x, r) = {y ∈ En : |x − y|n ≤ r}.

We now show how easily one can extend fixed point theory in Banach spaces
to applicable fixed point theory in Fréchet spaces. Our results are motivated
by Urysohn type operators. In this case the map Fn will be related to F by
the closure property (2.10).

Theorem 2.1. Let E and En be as described in the beginning of Section 2,
C a convex subset in E, V a pseudo-open bounded subset of E, 0 ∈ V ∩ C,
and F : Y → 2E with Y ⊆ E, and Un = Vn ∩ Cn ⊆ Yn for each n ∈ N (here
Un = Vn ∩Cn). Also for each n ∈ N assume Fn : Un → 2En and suppose the
following conditions are satisfied:

(2.5) U1 ⊇ U2 ⊇ ..........

(2.6)

 for each n ∈ N, Fn : Un → K(En) is a
closed AcAp countably condensing map; here
Un denotes the closure of Un in Cn

(2.7) for each n ∈ N, Fn(x) ⊆ ICn
(x) for each x ∈ Un

(2.8)


for each n ∈ N, y /∈ λFn y in En for all
λ ∈ (0, 1] and y ∈ ∂ Un; here ∂Un

denotes the boundary of Un in Cn

(2.9)
{

for each n ∈ N, the map Kn : Un → 2En given in
Remark 2.2 is hemicompact

and

(2.10)


if there exists a w ∈ Y and a sequence {yn}n∈N

with yn ∈ Un and yn ∈ Fn yn in En such that
for every k ∈ N there exists a subsequence
S ⊆ {k + 1, k + 2, .....} of N with jk µk,n j−1

n (yn) → w
in Ek as n → ∞ in S, then w ∈ F w in E.

Then F has a fixed point in E.

Remark 2.2. The definition of Kn is as follows. If y ∈ Un and y /∈ Un+1 then
Kn(y) = Fn(y). If y ∈ Un+1 and y /∈ Un+2 then

Kn(jn µn,n+1 j−1
n+1 y) = Fn(jn µn,n+1 j−1

n+1 y) ∪ jn µn,n+1 j−1
n+1 Fn+1(y)

whereas if y ∈ Un+2 and y /∈ Un+3 then

Kn(jn µn,n+2 j−1
n+2 y) = Fn(jn µn,n+2 j−1

n+2 y)

∪ jn µn,n+1 j−1
n+1 Fn+1(jn+1 µn+1,n+2 j−1

n+2 y)

∪ jn µn,n+2 j−1
n+2 Fn+2(y),

and so on.
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Proof. Fix n ∈ N . We would like to apply Theorem 1.1. To do so we need to
show

(2.11) Cn is convex

and

(2.12) Vn is a bounded open subset of En and jn µn (0) ∈ Un.

First we check (2.11). To see this let x̂, ŷ ∈ µn(C) and λ ∈ [0, 1]. Then for
every x ∈ µ−1

n (x̂) and y ∈ µ−1
n (ŷ) we have λx + (1 − λ)y ∈ C since C is

convex and so λx̂ + (1− λ)ŷ = λµn(x) + (1− λ)µn(y). It is easy to check that
λµn(x) + (1 − λ)µn(y) = µn(λx + (1 − λ)y) so as a result

λx̂ + (1 − λ)ŷ = µn(λx + (1 − λ)y) ∈ µn(C),

and so µn(C) is convex. Now since jn is linear we have Cn = jn(µn(C)) is
convex and as a result Cn is convex. Thus (2.11) holds.

Now since V is pseudo-open and 0 ∈ V then jn µn (0) ∈ pseudo − int V
so jn µn(0) ∈ Vn \ ∂Vn (here Vn and ∂Vn denote the closure and boundary
of Vn in En respectively). Of course

Vn \ ∂Vn = (Vn ∪ ∂Vn) \ ∂Vn = Vn \ ∂Vn

so jn µn (0) ∈ Vn \ ∂Vn, and in particular jn µn (0) ∈ Vn (this is easy to see
anyway from the definition of Vn). Thus jn µn (0) ∈ Vn∩Cn = Un. Next notice
Vn is bounded since V is bounded (note if y ∈ Vn then there exists x ∈ V
with y = jnµn(x)). It remains to show Vn is open. First notice Vn ⊆ Vn \ ∂Vn

since if y ∈ Vn then there exists x ∈ V with y = jnµn(x) and this together
with V = pseudo − int V yields jnµn(x) ∈ Vn \ ∂Vn i.e. y ∈ Vn \ ∂Vn. In
addition notice

Vn \ ∂Vn = (int Vn ∪ ∂Vn) \ ∂Vn = int Vn \ ∂Vn = int Vn

since int Vn ∩ ∂Vn = ∅. Consequently

Vn ⊆ Vn \ ∂Vn = int Vn, so Vn = int Vn.

As a result Vn is open in En. Thus (2.12) holds.
For each n ∈ N (see Theorem 1.1) there exists yn ∈ Un = Vn ∩ Cn with

yn ∈ Fn yn . Lets look at {yn}n∈N . We claim that

(2.13) d1(j1 µ1,n j−1
n (yn),K1 (j1 µ1,n j−1

n (yn))) = 0;

here d1(x, Z) = infy∈Z |x − y|1 for Z ⊆ E1. First we show (2.13) is true with
n = 1 i.e. we show d1(y1,K1(y1)) = 0. Note y1 ∈ U1. If y1 /∈ U2 then
K1(y1) = F1(y1) so y1 ∈ F1(y1) = K1(y1). If y1 ∈ U2 and y1 /∈ U3 then

K1(y1) = K1(j1 µ1,2 j−1
2 (y1)) ⊇ F1(j1 µ1,2 j−1

2 (y1)) = F1(y1)

since y1 ∈ U1 and y1 ∈ U2 (so we have y1 = j1 µ1,2 j−1
2 (y1)). Thus y1 ∈

K1(y1). If y1 ∈ U3 and y1 /∈ U4 then

K1(y1) = K1(j1 µ1,3 j−1
3 (y1)) ⊇ F1(j1 µ1,3 j−1

3 (y1)) = F1(y1)
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since y1 ∈ U1. Thus y1 ∈ K1(y1). Continue this process and we see that
(2.13) is true when n = 1. Next we show (2.13) is true with n = 2 i.e.
we show d1(j1 µ1,2 j−1

2 (y2),K1(j1 µ1,2 j−1
2 (y2))) = 0. Note y2 ∈ F2(y2) so

j1 µ1,2 j−1
2 (y2) ∈ j1 µ1,2 j−1

2 F2(y2). Note y2 ∈ U2. If y2 /∈ U3 then

K1(j1 µ1,2 j−1
2 (y2)) ⊇ j1 µ1,2 j−1

2 F2(y2)

and so

j1 µ1,2 j−1
2 (y2) ∈ j1 µ1,2 j−1

2 F2(y2) ⊆ K1(j1 µ1,2 j−1
2 (y2)).

If y2 ∈ U3 and y2 /∈ U4 then

K1(j1 µ1,3 j−1
3 (y2)) ⊇ j1 µ1,2 j−1

2 F2(j2 µ2,3 j−1
3 (y2))

and since y2 ∈ U2 and y2 ∈ U3 we have y2 = j2 µ2,3 j−1
3 (y2) so

j1 µ1,2 j−1
2 (y2) = j1 µ1,2 j−1

2 j2 µ2,3 j−1
3 (y2) = j1 µ1,2 µ2,3 j−1

3 (y2)

= j1 µ1,3 j−1
3 (y2).

Thus
K1(j1 µ1,2 j−1

2 (y2)) ⊇ j1 µ1,2 j−1
2 F2(y2)

so j1 µ1,2 j−1
2 (y2) ∈ K1(j1 µ1,2 j−1

2 (y2)). Continue this process and we see that
(2.13) is true when n = 2. Proceed as above and it is easy to see that (2.13) is
true for n ∈ N .

Now (2.9) (with n = 1) guarantees that there exists a subsequence N⋆
1 of

N and a z1 ∈ U1 with j1 µ1,n j−1
n (yn) → z1 in E1 as n → ∞ in N⋆

1 . Let
N1 = N⋆

1 \ {1}. Look at {yn}n∈N1 . Now as above it is easy to see for n ∈ N1

that
d2(j2 µ2,n j−1

n (yn),K2 (j2 µ2,n j−1
n (yn))) = 0;

here d2(x,Z) = infy∈Z |x − y|2 for Z ⊆ E2. Also there exists a subsequence
N⋆

2 of N1 and a z2 ∈ U2 with j2 µ2,n j−1
n (yn) → z2 in E2 as n → ∞ in

N⋆
2 . Note from (2.4) and the uniqueness of limits that j1 µ1,2 j−1

2 z2 = z1

in E1 since N⋆
2 ⊆ N1 (note j1 µ1,n j−1

n (yn) = j1 µ1,2 j−1
2 j2 µ2,n j−1

n (yn) for
n ∈ N⋆

2 ). Let N2 = N⋆
2 \ {2}. Proceed inductively to obtain subsequences of

integers
N⋆

1 ⊇ N⋆
2 ⊇ ......, N⋆

k ⊆ {k, k + 1, ....}
and zk ∈ Uk with jk µk,n j−1

n (yn) → zk in Ek as n → ∞ in N⋆
k . Note

jk µk,k+1 j−1
k+1 zk+1 = zk in Ek for k ∈ {1, 2, ...}. Also let Nk = N⋆

k \ {k}.
Fix k ∈ N . Note

zk = jk µk,k+1 j−1
k+1 zk+1 = jk µk,k+1 j−1

k+1 jk+1 µk+1,k+2 j−1
k+2 zk+2

= jk µk,k+2 j−1
k+2 zk+2 = ..... = jk µk,m j−1

m zm = πk,m zm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈
lim← En = E and also note y ∈ Y since zk ∈ Uk ⊆ Yk for each k ∈ N . Also
since yn ∈ Fn yn in En for n ∈ Nk and jk µk,n j−1

n (yn) → zk = y in Ek as
n → ∞ in Nk we have from (2.10) that y ∈ F y in E. ¤
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Remark 2.3. Note we could replace Un ⊆ Yn above with Un a subset of the
closure of Yn in En if Y is a closed subset of E (so in this case we can take
Y = C ∩ V if Cn ∩ Vn is a subset of the closure of jn µn (C ∩ V ) in En and
if C is closed). To see this note zk ∈ Uk, y = (zk) ∈ lim← En = E and
πk,m (ym) → zk in Ek as m → ∞ and we can conclude that y ∈ Y = Y

(note q ∈ Y iff for every k ∈ N there exists (xk,m) ∈ Y , xk,m = πk,n (xn,m)
for n ≥ k with xk,m → jk µk (q) in Ek as m → ∞).

Remark 2.4. Suppose in Theorem 2.1 we have

(2.5)⋆ U1 ⊇ U2 ⊇ ..........

and

(2.9)⋆ for each n ∈ N, the map Kn : Un → 2En is hemicompact

instead of (2.5) and (2.9); here if y ∈ Un and y /∈ Un+1 then Kn(y) = Fn(y)
whereas if y ∈ Un+1 and y /∈ Un+2 then

Kn(jn µn,n+1 j−1
n+1 y) = Fn(jn µn,n+1 j−1

n+1 y) ∪ jn µn,n+1 j−1
n+1 Fn+1(y)

and so on. In addition we assume F : Y → 2E with Un ⊆ Yn for each n ∈ N
is replaced by F : Y → 2E with Un ⊆ Yn for each n ∈ N . Then the result in
Theorem 2.1 is again true.

The proof follows the reasoning in Theorem 2.1 except in this case zk ∈ Uk.

Next we present a result for weakly inward Kakutani maps using Theorem
1.2.

Theorem 2.2. Let E and En be as described in the beginning of Section 2,
C a convex bounded subset in E, F : Y → 2E with Y ⊆ E, and Cn ⊆ Yn for
each n ∈ N . Also for each n ∈ N assume Fn : Cn → 2En and suppose the
following conditions are satisfied:

(2.14) C1 ⊇ C2 ⊇ ..........

(2.15)
{

for each n ∈ N, Fn : Cn → CK(En) is a
upper semicontinuous condensing map

(2.16) for each n ∈ N, Fn(x) ∩ ICn
(x) ̸= ∅ for x ∈ Cn

(2.17)
{

for each n ∈ N, the map Kn : Cn → 2En given in
Remark 2.5 is hemicompact

and

(2.18)


if there exists a w ∈ Y and a sequence {yn}n∈N

with yn ∈ Cn and yn ∈ Fn yn in En such that
for every k ∈ N there exists a subsequence
S ⊆ {k + 1, k + 2, .....} of N with jk µk,n j−1

n (yn) → w
in Ek as n → ∞ in S, then w ∈ F w in E.
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Then F has a fixed point in E.

Remark 2.5. The definition of Kn is as follows. If y ∈ Cn and y /∈ Cn+1 then
Kn(y) = Fn(y) whereas if y ∈ Cn+1 and y /∈ Cn+2 then Kn(jn µn,n+1 j−1

n+1 y) =
Fn(jn µn,n+1 j−1

n+1 y) ∪ jn µn,n+1 j−1
n+1 Fn+1(y) and so on.

Proof. For each n ∈ N there exists (Theorem 1.2) yn ∈ Cn with yn ∈ Fn yn in
En. Essentially the same reasoning as in Theorem 2.1 establishes the result. ¤
Remark 2.6. Note we could replace Cn ⊆ Yn above with Cn a subset of the
closure of Yn in En if Y is a closed subset of E (so in this case we can take
Y = C if C is a closed subset of E).

For our next definitions E and En are as described in the beginning of
Section 2, C is a convex subset of E, V a bounded pseudo–open subset of E

and F : Y → 2E with Y ⊆ E. Also assume either Un = Vn ∩ Cn ⊆ Yn for
each n ∈ N (here Un = Vn ∩ Cn) or Un is a subset of the closure of Yn in
En for each n ∈ N (with Y a closed subset of E). In addition assume for
each n ∈ N that Fn : Un → 2En .

Definition 2.1. F ∈ K(Y, E) if for each n ∈ N we have Fn ∈ K(Un, En) (i.e.
for each n ∈ N , Fn : Un → CK(En) is a upper semicontinuous condensing
map with Fn(x) ∩ ICn

(x) ̸= ∅ for x ∈ Un); here Un denotes the closure of
Un in Cn.

Definition 2.2. F ∈ K∂(Y, E) if F ∈ K(Y, E) and for each n ∈ N we have
x /∈ Fn (x) for x ∈ ∂Un; here ∂Un denotes the boundary of Un in Cn.

Definition 2.3. A map F ∈ K∂(Y, E) is essential in K∂(Y, E) if for each
n ∈ N we have that Fn ∈ K∂Un(Un, En) is essential in K∂Un(Un, En) (i.e.
for each n ∈ N , every map G ∈ K∂Un(Un, En) with G|∂Un = Fn|∂Un has a
fixed point in Un \ ∂Un).

Remark 2.7. Note if jn µn(0) ∈ Un for each n ∈ N then 0 ∈ K∂(Y, E) is
essential in K∂(Y,E) by Remark 1.3.

Definition 2.4. (We assume jn µn(0) ∈ Un for each n ∈ N). F, 0 ∈
K∂(Y,E) are homotopic in K∂(Y, E), written F ∼= 0 in K∂(Y,E), if for each
n ∈ N we have Fn

∼= jn µn(0) in K∂Un(Un, En).

Theorem 2.3. Let E and En be as described in the beginning of Section 2, C
a convex subset in E, V a bounded pseudo–open subset of E and F : Y → 2E

with Y ⊆ E. Also assume either Un = Vn ∩ Cn ⊆ Yn for each n ∈ N (here
Un = Vn ∩ Cn) or Un is a subset of the closure of Yn in En for each n ∈ N
(with Y a closed subset of E). Suppose 0 ∈ V ∩ C and for each n ∈ N
assume Fn : Un → 2En and also suppose F ∈ K∂(Y, E) with (2.5) and the
following condition satisfied:

(2.19) F ∼= 0 in K∂(Y, E).
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Also assume (2.9) and (2.10) hold. Then F has a fixed point in E.

Proof. Fix n ∈ N . Now Remark 2.7 guarantees that the zero map (i.e. G(x) =
jn µn (0)) is essential in K∂Un(Un, En) for each n ∈ N . Now Theorem 1.3
guarantees that Fn is essential in K∂Un(Un, En) so in particular there exists
yn ∈ Un with yn ∈ Fn yn. Essentially the same reasoning as in Theorem 2.1
(with Remark 2.3) establishes the result. ¤

Remark 2.8. If for each n ∈ N the map Fn : Un → CK(En) is countably
condensing instead of condensing in Definition 2.1 (and throughout) then we
assume Fn(x) ∩ ICn

(x) ̸= ∅ for x ∈ Un instead of Fn(x) ∩ ICn
(x) ̸= ∅ for

x ∈ Un in Definition 2.1 (and throughout).

Remark 2.9. Notice 0 ∈ V ∩ C and (2.19) could be replaced by F ∼= G in
K∂(Y,E) (of course we assume G ∈ K∂(Y,E) and we must specify Gn for
n ∈ N here).

Remark 2.10. Note Remark 2.4 holds in this situation also.

Theorem 2.4. Let E and En be as described in the beginning of Section 2, C
a convex subset in E, V a bounded pseudo–open subset of E and F : Y → 2E

with Y ⊆ E. Also assume either Un = Vn ∩ Cn ⊆ Yn for each n ∈ N (here
Un = Vn ∩ Cn) or Un is a subset of the closure of Yn in En for each n ∈ N
(with Y a closed subset of E). Suppose 0 ∈ V ∩ C and for each n ∈ N
assume Fn : Un → 2En and also suppose F ∈ K∂(Y, E) with (2.5), (2.9),
(2.10) and the following condition satisfied:

(2.20)
{

for each n ∈ N, y /∈ λFn y in En for all
λ ∈ (0, 1] and y ∈ ∂ Un.

Then F has a fixed point in E.

Proof. Now (2.19) is immediate if we take for each n ∈ N , Hn(x, λ) = λF (x)
for (x, λ) ∈ Un × [0, 1]. Our result follows from Theorem 2.3. ¤

Next we present a Krasnoselskii type result for weakly inward maps in the
Fréchet space setting.

Theorem 2.5. Let E and En be as described in the beginning of Section 2,
C a convex subset in E, U and V are bounded pseudo–open subsets of E
with 0 ∈ U ⊆ U ⊆ V and F : Y → 2E with Y ⊆ E. Also assume either
Wn = Vn ∩ Cn ⊆ Yn for each n ∈ N (here Wn = Vn ∩ Cn) or Wn is a
subset of the closure of Yn in En for each n ∈ N (with Y a closed subset of
E). Also for each n ∈ N assume Fn : Wn → 2En and suppose the following
conditions are satisfied:

(2.21) W1 ⊇ W2 ⊇ ..........
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(2.22)


for each n ∈ N, Fn : Wn → CK(En) is a upper
semicontinuous condensing map with Fn(x) ∩ ICn

(x) ̸= ∅
for x ∈ Wn; here Wn denotes the closure of Wn in Cn

(2.23)
{

for each n ∈ N, y /∈ λFn y in En for all
λ ∈ [0, 1] and y ∈ ∂ Wn

(2.24)
{

for each n ∈ N, ∃ vn ∈ Cn \ {0} with x /∈ Fn x + δ vn

for δ ≥ 0 and x ∈ ∂Ωn; here Ωn = Un ∩ Cn

(2.25)


for each n ∈ N, Fn( . ) + µ vn : Ωn → CK(En) is
weakly inward with respect to Cn for all µ ≥ 0
(i.e. [Fn(x) + µ vn] ∩ ICn

(x) ̸= ∅ for x ∈ Ωn)

(2.26)
{

for each n ∈ N, the map Kn : Wn → 2En given in
Remark 2.11 is hemicompact

(2.27)


for every k ∈ N and any subsequence A ⊆ {k, k + 1, ....}
if x ∈ Cn is such that x ∈ Wn \Ωn for some n ∈ A
then there exists a γ > 0 with |jk µk,n j−1

n x|k ≥ γ

and

(2.28)


if there exists a w ∈ Y and a sequence {yn}n∈N

with yn ∈ Wn \Ωn and yn ∈ Fn yn in En such that
for every k ∈ N there exists a subsequence
S ⊆ {k + 1, k + 2, .....} of N with jk µk,n j−1

n (yn) → w
in Ek as n → ∞ in S, then w ∈ F w in E.

Then F has a fixed point in E.

Remark 2.11. The definition of Kn is as follows. If y ∈ Wn and y /∈ Wn+1

then Kn(y) = Fn(y) and so on.

Proof. Fix n ∈ N . Now Cn is convex and Un, Vn are open bounded subsets
of En with jn µn(0) ∈ Un ⊆ Vn. It just remains to show Un ⊆ Un ⊆ Vn. Of
course since U ⊆ U ⊆ V we have

Un = jnµn(U) ⊆ jnµn(U) ⊆ jnµn(V ) = Vn

and since jnµn is continuous Un ⊆ jnµn(U) ⊆ jn µn(U) = Un. Also we see
µn(U) ⊆ µn(V ) (note U ⊆ V ) so since jn is an isometry

Un = jn µn(U) = jn µn(U) ⊆ jn µn(V ) = Vn.

Theorem 1.4 guarantees there exists yn ∈ Wn \Ωn with yn ∈ Fn yn in En. As
in Theorem 2.1 there exists is a subsequence N⋆

1 of N and a z1 ∈ W1 with
j1 µ1,n j−1

n (yn) → z1 in E1 as n → ∞ in N⋆
1 . Also yn ∈ Wn \Ωn together
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with (2.22) yields |j1 µ1,n j−1
n (yn)|1 ≥ γ for n ∈ N and so |z1|1 ≥ γ. Let

N1 = N⋆
1 \ {1}. Proceed inductively to obtain subsequences of integers

N⋆
1 ⊇ N⋆

2 ⊇ ......, N⋆
k ⊆ {k, k + 1, ....}

and zk ∈ Wk with jk µk,n j−1
n (yn) → zk in Ek as n → ∞ in N⋆

k . Note
jk µk,k+1 j−1

k+1 zk+1 = zk in Ek for k ∈ {1, 2, ...} and |zk|k ≥ γ. Also let
Nk = N⋆

k \ {k}. Now essentially the same reasoning as in Theorem 2.1 (with
Remark 2.3) guarantees the result. ¤

Remark 2.12. Note (2.27) is only needed to guarantee that the fixed point y
satisfies |jk µk (y)|k ≥ γ for k ∈ N . If we assume all the conditions in Theorem
2.5 except (2.27) then again F has a fixed point in E but the above property
is not guaranteed.

We next present a Mönch type result using Theorem 1.5.

Theorem 2.6. Let E and En be as described in the beginning of Section 2,
X ⊆ E and F : Y → 2E with intXn ⊆ Yn for each n ∈ N or intXn is a
subset of the closure of Yn in En for each n ∈ N (with Y a closed subset
of E). Also for each n ∈ N assume Fn : intXn → 2En and suppose the
following conditions are satisfied:

(2.29) intX1 ⊇ intX2 ⊇ ..........

(2.30) x0 ∈ pseudo − int (X)

(2.31)
{

for each n ∈ N, Fn : int Xn → CK(En) is a upper
semicontinuous map

(2.32)


for each n ∈ N, M ⊆ intXn with
M ⊆ co ({jn µn(x0)} ∪ Fn(M)) with M = C
and C ⊆ M countable, implies M is compact

(2.33)
{

for each n ∈ N, y /∈ (1 − λ) jn µn(x0) + λFn y in En

for all λ ∈ (0, 1] and y ∈ ∂ intXn

(2.34)
{

for each n ∈ N, the map Kn : intXn → 2En given in
Remark 2.13 is hemicompact

and

(2.35)


if there exists a w ∈ Y and a sequence {yn}n∈N

with yn ∈ intXn and yn ∈ Fn yn in En such that
for every k ∈ N there exists a subsequence
S ⊆ {k + 1, k + 2, .....} of N with jk µk,n j−1

n (yn) → w
in Ek as n → ∞ in S, then w ∈ F w in E.

Then F has a fixed point in E.
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Remark 2.13. The definition of Kn is as follows. If y ∈ intXn and y /∈
intXn+1 then Kn(y) = Fn(y) and so on.

Remark 2.14. Suppose in Theorem 2.6 we have

(2.29)⋆ intX1 ⊇ intX2 ⊇ ..........

and

(2.34)⋆ for each n ∈ N, the map Kn : intXn → 2En is hemicompact

instead of (2.29) and (2.34); here if y ∈ intXn and y /∈ intXn+1 then Kn(y) =
Fn(y) and so on. In addition we assume F : Y → 2E with intXn ⊆ Yn (or
intXn is a subset of the closure of Yn in En if Y is a closed subset of E)
for each n ∈ N is replaced by F : X → 2E and suppose (2.35) is true with
w ∈ Y replaced by w ∈ X. Then the result in Theorem 2.6 is again true.

Also we have the following result for Mönch inward type maps (just apply
Theorem 1.6 in this case).

Theorem 2.7. Let E and En be as described in the beginning of Section 2,
C a convex subset in E, V a pseudo-open bounded subset of E, 0 ∈ V ∩ C,
and F : Y → 2E with Y ⊆ E, and Un = Vn ∩ Cn ⊆ Yn for each n ∈ N (here
Un = Vn ∩Cn) or Un is a subset of the closure of Yn in En (with Y a closed
subset of E). Also for each n ∈ N assume Fn : Un → 2En and suppose (2.5),
(2.7), (2.8) and the following conditions hold:

(2.36)


for each n ∈ N, Fn : Un → CK(En) is
upper semicontinuous and Fn(Un) is bounded;
here Un denotes the closure of Un in Cn

and

(2.37)


for each n ∈ N, D ⊆ En with
D ⊆ co ({jn µn(0)} ∪ Fn(D ∩ Un)) and D = B
with B ⊆ D countable, implies D ∩ Un is compact.

In addition assume (2.9) and (2.10) hold. Then F has a fixed point in E.

Remark 2.15. Note Remark 2.4 holds in this situation also.

Finally in this section we consider contractive type maps. First we consider
single valued maps (just apply Theorem 1.7).

Theorem 2.8. Let E and En be as described in the beginning of Section 2,
X ⊆ E and F : Y → E with intXn ⊆ Yn for each n ∈ N or intXn is a
subset of the closure of Yn in En for each n ∈ N (with Y a closed subset of
E). Also for each n ∈ N assume Fn : intXn → En and suppose (2.29) and
the following conditions are satisfied:

(2.38) 0 ∈ pseudo − int (X)

(2.39) for each n ∈ N, Fn(intXn) is bounded
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(2.40)


for each n ∈ N, there exists a continuous
nondecreasing function ϕn : [0,∞) → [0,∞)
satisfying ϕn(z) < z for z > 0 such that
|Fn x − Fn y|n ≤ ϕn(|x − y|n) for all x, y ∈ intXn

and

(2.41)
{

for each n ∈ N, y ̸= λFn y in En for all
λ ∈ (0, 1] and y ∈ ∂ int Xn.

Also assume (2.34) and (2.35) (with yn ∈ Fn yn and w ∈ F w replaced by
yn = Fn yn and w = F w) hold. Then F has a fixed point in E.

Remark 2.16. Note there is an analogue of Remark 2.14 in this situation and
in the next also.

Theorem 2.9. Let E and En be as described in the beginning of Section 2,
X ⊆ E and F : Y → 2E with intXn ⊆ Yn for each n ∈ N or intXn is a
subset of the closure of Yn in En for each n ∈ N (with Y a closed subset
of E). Also for each n ∈ N assume Fn : intXn → 2En and suppose (2.29),
(2.38) and the following conditions are satisfied:

(2.42) for each n ∈ N, Fn(intXn) is bounded

(2.43)


for each n ∈ N, Fn : intXn → C(En), and there
exists a continuous strictly increasing function
ϕn : [0,∞) → [0,∞) satisfying ϕn(z) < z for z > 0
such that Hn(Fn x, Fn y) ≤ ϕn(|x − y|n)
for all x, y ∈ intXn

(2.44)


for each n ∈ N, the map Φn : [0,∞) → [0,∞),
given by Φn(x) = x − ϕn(x), is strictly increasing,
Φ−1

n (a) + Φ−1
n (b) ≤ Φ−1

n (a + b) for a, b ≥ 0,
with

∑∞
i=0 ϕi

n(t) < ∞ for t > 0 and∑∞
i=1 ϕi

n(x − ϕ(x)) ≤ ϕn(x) for x > 0

and

(2.45)
{

for each n ∈ N, y /∈ λFn y in En for all
λ ∈ (0, 1] and y ∈ ∂ intXn.

Also assume (2.34) and (2.35) hold. Then F has a fixed point.
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Fréchet spaces, Applicable Analysis 85 (2006), 503–513.
[12] D. O’Regan, Leray-Schauder results for inward acyclic and approximable maps defined
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