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FIXED POINT THEORY IN FRECHET SPACES FOR
MONCH INWARD AND CONTRACTIVE URYSOHN TYPE
OPERATORS

DoNAL O’REGAN

ABSTRACT. We present new fixed point theorems for inward and weakly
inward Urysohn type maps. Also we discuss Monch Kakutani and con-
tractive type maps.

1. Introduction

This paper presents new fixed point theorems for multivalued maps of Ury-
sohn type between Fréchet spaces. In particular we present new fixed point
theorems for weakly inward Kakutani maps and new Leray-Schauder alter-
natives for inward acyclic and approximable Urysohn type maps and weakly
inward Kakutani maps in Fréchet spaces. Also we obtain an applicable Leray-
Schauder alternative in Fréchet spaces for Kakutani Moénch type operators.
Finally contractive maps will also be discussed. The proofs rely on fixed point
theory in Banach spaces and viewing a Fréchet space as the projective limit of
a sequence of Banach spaces. In particular our theory is partly motivated by
the papers [1, 2, 4, 5, 11].

For the remainder of this section we present some definitions and some known
facts. Let X and Y be subsets of Hausdorff topological vector spaces E; and
E5 respectively. We will look at maps F : X — K(Y); here K(Y) denotes
the family of nonempty compact subsets of Y. We say F : X — K(Y)
is Kakutani if F is upper semicontinuous with convex values. A nonempty
topological space is said to be acyclic if all its reduced Cech homology groups
over the rationals are trivial. Now F : X — K(Y) is acyclic if F is upper
semicontinuous with acyclic values.

Given two open neighborhoods U and V of the origins in F; and F,
repectively, a (U, V)-approximate continuous selection of F : X — K(Y) is a
continuous function s: X — Y satisfying

s(z) e (Flx+U)NX]+V)NY forevery x€ X.
Received October 16, 2007; Accepted February 4, 2008.

2000 Mathematics Subject Classification. 47TH10.
Key words and phrases. Fixed point theory, projective limits.

(©2008 The Busan Gyeongnam Mathematical Society
233



234 DONAL O’'REGAN

Wesay F: X — K(Y) is approximable if it is a closed map and if its restriction
F|k to any compact subset K of X admits a (U, V)-approximate continuous
selection for every open neighborhood U and V of the origins in E; and Fs
repectively.

Let @ be a subset of a Hausdorff topological space X and =z € X. The
inward set Ig(x) is defined by

Io(@)={z+r(y—=): yeQ, r >0}
If @ is convex and x € @ then

Ipz)=x+{rly—z): ye @, r>1}.
A mapping F : Q — 2% (here 2% denotes the family of all nonempty subsets
of X) is said to be weakly inward with respect to @ if F(z)NIg(z) # 0 for
T € Q.

Existence in Section 2 is based on the following continuation theory for

Ac Ap maps. A map is said to be Ac Apif it is either acyclic or approximable.

In our next definitions E is a Banach space, C' a closed convex subset of FE
and Uy a bounded open subset of E. We will let U =UyNC and 0 € U. In

our definitions U and OU denote the closure and the boundary of U in C
respectively.

Definition 1.1. We say F € A(U,E
countably condensing map with F( )
U,E

) if F:U — K(E) is a closed Ac Ap
C Io(z) for x € U.

Definition 1.2. A map F € Apy(U,E) if F € A(U,E) with x ¢ Fa for

r € oU.

Definition 1.3. A map F € Asy (U, E) is essential in Agy (U, E) if for every
G € Aoy (U, E) with Gloy = Flsu there exists x € U with x € G z.

The following result was established in [10].
Theorem 1.1. Let E, C, Uy, U be as above, 0 € U and F € A(U,E) with
(1.1) r ¢ ANFz for x €9U and X € (0,1].
Then F is essential in Apy (U, E).

Remark 1.1. The proof of Theorem 1.1 is based on the fact that the zero map
is essential in Apy (U, E) and F =0 in Apy (U, E).

If the map F' in Theorem 1.1 was Kakutani then in fact we can obtain more
general results. The following result can be found in [6, 9].

Theorem 1.2. Let E be a Banach space and C a closed bounded convex
subset of E. Suppose F :C — CK(E) is a upper semicontinuous condensing
map with F(z) NIc(z) # 0 for x € C; here CK(E) denotes the family of
nonempty conver compact subsets of E. Then F has a fized point in E.
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Again in our next definitions F is a Banach space, C' a closed convex subset
of E and Uy a bounded open subset of E. We will let U = Uy NC.

Definition 1.4. We say F € K(U,E) if F : U — CK(E) is a upper semi-

continuous condensing map with F(x) N Io(x) # 0 for x € U.

Definition 1.5. A map F € Koy (U,E) if F € K(U,E) with z ¢ Fx for
x € 0U.

Definition 1.6. A map F' € Koy (U, E) is essential in Koy (U, E) if for every
G € Koy (U, E) with G|oy = F|su there exists x € U with = € G x.

Definition 1.7. Two maps F,G € Kyy(U, E) are homotopic in Kpy (U, E),
written F = G in Ky (U, E), if there exists a upper semicontinuous condens-
ing map N : U x [0,1] — CK(FE) such that Ny(u) = N(t,u) : U — CK(E)
belongs to Kpy (U, E) for each t € [0,1] and No = F, Ny = G.

The topological transversality theorem for weakly inward Kakutani maps
was established in [9].

Theorem 1.3. Let E, C, Uy and U be as above. Suppose F' and G are maps
in Kou (U, E) with F = G in Koy (U, E). Then F is essential in Koy (U, E)
iff G is essential in Koy (U, E).

Remark 1.2. If the map F' in Definition 1.4 (and throughout) was countably
condensing instead of condensing then we have to assume F(z) N Io(x) # 0

for x € U instead of F(z) N Ic(z) # 0 for x € U in Definition 1.4 (and
throughout); see [10] for details.

Remark 1.3. If 0 € U then the zero map is essential in Kpy (U, E); see [10]
for details (the proof uses Theorem 1.2).

The following Krasnoselskii type result was established in [9] (there is also
an obvious analogue for countably condensing maps if we note Remark 1.2).

Theorem 1.4. Let E be a Banach space, C a closed convex subset of E, W
and V' are open bounded subsets of E with Uy = WNC and Uy =V NC.
Suppose 0 € Uy CU; C Uy and F : Uy — CK(E) a upper semicontinuous,
condensing, weakly inward with respect to C (i.e. F(z)NIc(z) # O for
x € Uy) map. In addition assume the following conditions are satisfied:

(1.2) x ¢ A\Fx for €Uz and M€ ]0,1]

(1.3) Jv e C\{0} with x ¢ Fx+dv for 6§ >0 and x € dU;

F(.)+upv:U; — CK(E) is a weakly inward with respect

(1.4) to C (ie. [F(x)+pv]nlc(z)#0 for xeU)
map for all p > 0.

Then F has a fized point in Uy \ Uy.
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In this paper we also discuss Monch type compactness conditions instead
of countable condensing. In Section 2 one of our results will be based on a
Leray—Schauder alternative for Kakutani Moénch maps [1, 13] which we state
here for the convenience of the reader.

Theorem 1.5. Let K be a closed conver subset of a Banach space X, U a
relatively open subset of K, xo € U and suppose F : U — CK(K) is a upper
semicontinuous map. Also assume the following conditions hold:

(1.5) M CU, M Cco({zg}UF(M)) with M =C and
’ C C M countable, implies M is compact

and

(1.6) ¢ (1-N{xo}+AXFx for z€U\U and X€ (0,1).

Then there exists a compact set Y, of U and a x € Y, with v € Fx.

Also in Section 2 we will discuss inward Kakutani Moénch maps. In our next
definition and theorem E' is a Banach space, C a closed convex subset of E
and Uy a bounded open subset of E. We will let U =UyNC and 0 € U. In
our definitions U and OU denote the closure and the boundary of U in C
respectively.

Definition 1.8. We say F € KM(U,E) if F:U — CK(E) is upper semi-
continuous, F(U) is bounded, F(x) C Io(z) for x € U, and if D C E with
D Cco({0}UF(DNU)) and D= B with B C D countable then DNU is
compact.

The following theorem [2, 12] will be needed in Section 2.

Theorem 1.6. Let E, C, Uy, U be as before Definition 1.8, 0 € U and F €
KM(U,E) with

(1.7) x ¢ AFx for £ €dU and € (0,1)
holding. Then there exists a compact set > of U and a x € Y. with v € Fx.

Finally in Section 2 we consider contractive type maps. We recall the fol-
lowing two results from the literature [3, 8].

Theorem 1.7 ([8, Theorem 3.9]). Let U be an open subset in a Banach space
(X,][.]]) and F:U — X. Assume 0 € U and suppose there exists a continu-
ous nondecreasing function ¢ : [0,00) — [0,00) satisfying ¢(z) < z for z >0
such that |[Fx — Fy| < ¢(||lz — yl|) for all z,y € U. In addition assume
F(U) is bounded and x # N\Fx for x € OU and X\ € (0,1). Then F has a
fized point in U.

Theorem 1.8 ([3, Theorem 2.3 (and Remark 2.1)]). Let U be an open sub-
set in a Banach space (X,|.||) and F : U — C(X) a closed map (i.e. has
closed graph); here C(X) denotes the family of nonempty closed subsets of
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X. Assume 0 € U and suppose there exists a continuous strictly increas-
ing function ¢ : [0,00) — [0,00) satisfying ¢(z) < z for z > 0 such that
H(Fz,Fy) < ¢(|z —vyl|) for all z,y € U. In addition assume the following
conditions hold:

18 ®:[0,00) — [0,00), given by P(z)=2x — ¢(x),
(1.8) 18 strictly increasing
(1.9) O Ha)+ o) <d a+b) for a,b>0
(1.10) > ¢ (t) <o for t>0
i=0

(1.11) Y ¢z — (@) < éla) for &>0

i=1
(1.12) F(U) is bounded
and
(1.13) x¢ ANFa for €U and M€ (0,1).

Then F has a fized point in U.

Remark 1.4. In fact the assumption that F' is closed can be removed in Theo-
rem 1.8. In [3, Theorem 2.3] we assumed a more general contractive condition
and the condition is needed there.

Let (X,d) be a metric space and S a nonempty subset of X. For z € X
let d(z,S) = infyes d(z,y). Now suppose G : S — 2X. Then G is said to be
hemicompact if each sequence {z,}neny in S has a convergent subsequence
whenever d(z,,G (z,)) — 0 as n — oo.

Now let I be a directed set with order < and let {F,}qcr be a family of
locally convex spaces. For each av € I, 3 € I for which a < 3 let 7o 5: Eg —
FE, be a continuous map. Then the set

{a:: (zq) € H Ey: 2o =T p(zs) Vo, B, agﬁ}

acl

is a closed subset of [],.; Fo and is called the projective limit of {Fq}aer
and is denoted by lim. E, (or lim. {E,, T, g} or the generalized intersection
[9, pp. 439] Nacs Ea.)
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2. Fixed point theory in Fréchet spaces

Let E = (E,{|:|n}tnen) be a Fréchet space with the topology generated by
a family of seminorms {|- |, : n € N}; here N = {1,2,....}. We assume that
the family of seminorms satisfies

(2.1) lz]1 <zla < |z|3 < ... for every z € E.

A subset X of E is bounded if for every n € N there exists r, > 0 such
that |z|, <7, forall z € X. For r > 0 and z € E we denote B(z,r) =
{ye E: |z —y|ln, <rVn e N}. To E we associate a sequence of Banach
spaces {(E,,|-|n)} described as follows. For every n € N we consider the
equivalence relation ~, defined by

(2.2) x~py iff |z —yl, =0.

We denote by E" = (E /~y,, |- |n) the quotient space, and by (E,,|-|,) the
completion of E™ with respect to |- |, (the norm on E" induced by |- |,
and its extension to E,, are still denoted by |- |,). This construction defines a
continuous map f, : E — E,. Now since (2.1) is satisfied the seminorm |- |,
induces a seminorm on E,, for every m > n (again this seminorm is denoted
by |-]n). Also (2.2) defines an equivalence relation on E,, from which we
obtain a continuous map i, m, : E, — E,, since E,, /~, can be regarded as
a subset of E,. Now [t m ftmke = fink if n <m <k and py, = fn,m pm if
n < m. We now assume the following condition holds:

(2.3) for each n € N, there exists a Banach space (Ey,| - |n)
’ and an isomorphism (between normed spaces) j, : E, — E,.

Remark 2.1. (i). For convenience the norm on E,, is denoted by |- [,.

(ii). In our applications E, = E™ for each n € N.

(iii). Note if z € E,, (or E") then z € E. However if x € E,, then x is not
necessaily in F and in fact E, is easier to use in applications (even though
E,, isisomorphic to E,). For example if E = C[0,00), then E" consists of the
class of functions in E which coincide on the interval [0,n] and E,, = C[0,n].

Finally we assume

{ Ei1DFEyD....... and for each n € N,

‘Jn Hn,n+1 .77:-11-1 x|n < ‘-/L‘ln—i-l Ve En+1

(here we use the notation from [9] i.e. decreasing in the generalized sense). Let
lim. E, (or N{® E,, where N$° is the generalized intersection [9]) denote the
projective limit of {E,}nen (note mpm = jn finm jmt + Em — En for m > n)
and note lim_ FE, =& F, so for convenience we write F = lim._ F,,.

For each X C F and each n € N we set X,, = j, pun(X), and we let X,,,
int X,, and 0X,, denote respectively the closure, the interior and the boundary
of X, with respect to ||, in E,. Also the pseudo-interior of X is defined
by

pseudo — int (X) = {x € X : jp pn(z) € X,,\ 0X,, for every n € N}.

(2.4)
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The set X is pseudo-open if X = pseudo — int (X). For r >0 and « € E,
we denote By (x,7) ={y € E, : |v—y|, <r}.

We now show how easily one can extend fixed point theory in Banach spaces
to applicable fixed point theory in Fréchet spaces. Our results are motivated

by Urysohn type operators. In this case the map F,, will be related to F by
the closure property (2.10).

Theorem 2.1. Let E and E, be as described in the beginning of Section 2,
C a convex subset in E, V a pseudo-open bounded subset of E, 0 € VNC,
and F:Y —2F with Y CE, and U, =V,,NC, CY, for each n € N (here
U, =V,NGC,). Also for each n € N assume F, : U, — 2E» and suppose the
following conditions are satisfied:

(2.5) U DUy D ..

for each n € N, F, :U, — K(E,) isa
(2.6) closed AcAp countably condensing map; here
U, denotes the closure of U, in C,

(2.7) for each m € N, F,(z) C Iz-(z) for each x € U,

for each n € N, y¢ AXF,y in E, forall
(2.8) A€ (0,1] and y € 0Uy; here OU,
denotes the boundary of U, in C,

for each n € N, the map K, :U, — 2P given in
Remark 2.2 is hemicompact

if there exists a w €Y and a sequence {yn}nen

with y, € U, and y, € F,y, in E, such that
(2.10) for every k € N there exists a subsequence

SC{k+1,k+2,..} of N with jipiknijy* (yn) — w

in Ep as n— oo in S, then w € Fw in E.

Then F has a fixed point in E.

Remark 2.2. The definition of K, is as follows. If y € U,, and y ¢ U, 1 then
K:n(y) = Fn(y) If ye Uny1 and y ¢ Un+2 then

Icn(]n Hn,n+1 J;+11 y) = Fn(]n Hn,n+1 .77;&1 y) U Jn fnntl .71;&1 Fn+1(y)
whereas if y € U,,42 and y ¢ U, 43 then

K:n (]n Hnn+2 ];-11-2 y) = Fn (]n M n+2 .7;-11-2 y)
Jn Mnn+1 .];-&1-1 Fot1(Jna Hn+1,n+2 3541-2 Y)
U jn tnnt2 o Frr2(y),

(-

and so on.
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Proof. Fix n € N. We would like to apply Theorem 1.1. To do so we need to
show

(2.11) C), is convex
and
(2.12) V.. is a bounded open subset of E, and j, pun (0) € Uy.

First we check (2.11). To see this let &, § € u,(C) and A € [0,1]. Then for
every x € p,(2) and y € p, () we have \x + (1 — \)y € C since C is
convex and so AZ + (1 — A)g = An () + (1 — A)pn(y). It is easy to check that
An (@) + (1 = XN pin(y) = pn(Ax 4+ (1 — N)y) so as a result

AZ+ (1= N7 = pa(Az + (1 = N)y) € pn(C),

and so fi,(C) is convex. Now since j, is linear we have C,, = j,(un(C)) is
convex and as a result C), is convex. Thus (2.11) holds.
Now since V' is pseudo-open and 0 € V' then jy p,, (0) € pseudo — intV

SO Jjin tin(0) € V,,\ 0V, (here V,, and 9V,, denote the closure and boundary
of V,, in E, respectively). Of course

Vo \ OV, = (Vo UV, \ OV, = V,, \ OV,

SO jn pin (0) € V,,\ OV, and in particular j, u, (0) € V,, (this is easy to see
anyway from the definition of V},). Thus j, ., (0) € V,,NC,, = U,,. Next notice
V.. is bounded since V is bounded (note if y € V;, then there exists © € V'
with y = jnpn(x)). It remains to show V;, is open. First notice V,, C V,, \ V,,
since if y € V,, then there exists € V' with y = j,u,(x) and this together
with V = pseudo — intV yields joun(z) € V,\ 0V, ie. y € V,\0V,. In
addition notice

Vi \ OV, = (int Vyy UV,)\ 0V, = int Vy,\ OV, = int Vi,
since int V,, N dV,, = 0. Consequently
Vi, CV,\ OV, =intV,, so Vi, =intV,.

As aresult V,, is open in E,. Thus (2.12) holds.

For each n € N (see Theorem 1.1) there exists y, € U, = V,, N C,, with
Yn € Fryn . Lets look at {yn }nen. We claim that
(2.13) di(r pan G (), K1 (Gt s dn () = 05
here di(x,Z) =infycyz |z —y|1 for Z C E,. First we show (2.13) is true with
n =1 ie. we show di(y1,K1(y1)) = 0. Note y; € Uy. If y; ¢ Us then
Ki(y1) = Fi(y1) so y1 € Fi(y1) = Ki(y1). If y1 € Uy and y; ¢ Uz then

Ki(y1) = K1(jipn2ds " (1)) 2 Fi(yp2dy ' (1) = Fi(y)

since y; € Uy aid IS U72£o we have y; = j; /L172j2_1 (y1)). Thus y; €
Ki(y1). If y1 € Us and y; ¢ Uy then

Ki(y) = Ki(Gimsds ' (1) 2 Fi(jipmsds ' (1)) = Fi(y)
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since y; € U;. Thus y; € Ki(y1). Continue this process and we see that
(2.13) is true when n = 1. Next we show (2.13) is true with n = 2 i.e.
we show di(ji 125 (y2), Ki(ji 2y ' (y2))) = 0. Note y» € Fa(yz) so
Ji 275" (Y2) € 11,255 " Fa(y2). Note yo € Us. If yo ¢ Us then
Ki(j 2yt (2)) 2 j1pa2ds " Fa(ys)

and so

Ji2dst (Y2) € g1z gyt Fay2) € Ki(ir pa dy ' (y2))-
If yo € Uz and yy ¢ Uy then

Ki(imsis ' (y2)) 2 j1ma2ds  Falja posis ' (y2))
and since ys € Uz and ya € Us we have ys = jo pa 3 jgl (y2) so
Jrinz gyt (g2) = drpiadyjapesds (y2) = jipnapas s (y2)

J1i3ds (ye).

Thus

Ki(jipi2ds " (y2) 2 12 dy ' Falye)
SO J1 12 j2_1 (y2) € K1(j1 p1 2 j2_1 (y2)). Continue this process and we see that
(2.13) is true when n = 2. Proceed as above and it is easy to see that (2.13) is
true for n € N.

Now (2.9) (with n = 1) guarantees that there exists a subsequence N7 of
N and a 21 € Uy with j1 1,5, (yn) — 21 in By as n — oo in Nj. Let
N1 = N{\{1}. Look at {yn}nen,. Now as above it is easy to see for n € Ny
that

da (G2 p2,m Gt () K2 (a2 p2om Gt (yn))) = 0;
here dy(z,Z) = infycz |x — y|2 for Z C E5. Also there exists a subsequence
N3 of Ny and a 29 € Uy with jaua,j,t(yn) — 22 in By as n — oo in
N3. Note from (2.4) and the uniqueness of limits that ji 12 j;l Zo = 21
in By since N3 C Ny (note jipi1, 5t (Yn) = jip255 G2 pon jit (yn) for
n € NJ). Let No = N3\ {2}. Proceed inductively to obtain subsequences of
integers
N DN D ... , NiC{k,k+1,..}
and 2z, € Up with jg penjn ! (Yn) — 2zx in Ex as n — oo in N}. Note
Jk Bek1 Jriy 21 = 25 in By for k€ {1,2,...}. Also let Ny, = N\ {k}.
Fix k € N. Note

. 1 . 1 . 1
2k = Jk Hkk+1Jp41 Fk+1 = Jk Bk k+1 Jpy1 Jk+1 Bk+1,k+2 Jp 42 “h+2
. —1 . .1
= Jk Kk k+2 Jk+2 Zk+4+2 = «oven =Jk lem Jm #m = Tkm Zm

for every m > k. We can do this for each k € N. As a result y = (z) €
lim. E,, = F and also note y € Y since z € Uy C Y}, for each k € N. Also
since y, € F,y, in E, for n € N and ji ukynjgl (yn) — zx =y in FEj as
n — oo in Nj we have from (2.10) that y € Fy in E. O
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Remark 2.3. Note we could replace U,, C Y,, above with U,, a subset of the
closure of Y,, in E, if Y is a closed subset of E (so in this case we can take
Y =CnNV if C,NV, is a subset of the closure of j, i, (CNV) in E, and
if C is closed). To see this note 2z € Uy, y = (2) € lim_ E, = FE and
Tkm (Ym) — 2zx in Ex as m — oo and we can conclude that y € Y =Y
(note q € Y iff for every k € N there exists (zxm) €Y, Tk = Thn (Tn.m)
for n >k with xpm — ji 1k (@) in By as m — 00).

Remark 2.4. Suppose in Theorem 2.1 we have

(2.5)* U DU D ...
and
(2.9)* for each n € N, the map K, :U, — 2P is hemicompact

instead of (2.5) and (2.9); here if y € U,, and y ¢ Up41 then K,(y) = F,.(y)
whereas if y € U,,41 and y ¢ U, 42 then

K:n(.jn Hnn+1 ]7:4,{1 y) = Fn(]n Hn,n+1 ]7:4,{1 y) U jn Hn,n+1 ‘77:4,1_1 Fn+1(y)
and so on. In addition we assume F :Y — 2F with U,, CY,, for each n € N

is replaced by F :Y — 2F with U, CY,, for each n € N . Then the result in
Theorem 2.1 is again true.

The proof follows the reasoning in Theorem 2.1 except in this case z € Uy.

Next we present a result for weakly inward Kakutani maps using Theorem
1.2.

Theorem 2.2. Let E and E, be as described in the beginning of Section 2,
C a convex bounded subset in E, F:Y — 2F with Y C E, and C, CY, for

each n € N. Also for each n € N assume F, : C,, — 2P~ and suppose the
following conditions are satisfied:

(2.14) Ci2CD .
(2.15) for each n € N, F, : C,, — CK(E,) isa
’ upper semicontinuous condensing map
(2.16) for each ne N, F,(x) NIz (z) #0 for z€C,
(2.17) for each n € N, the map K, :C, — 2F given in
' Remark 2.5 is hemicompact
and

if there exists a w €Y and a sequence {yp}tnen

with y, € C,, and y, € Fyy, in E, such that
(2.18) for every k € N there exists a subsequence

SC{k+1,k+2,...} of N with jipignij,* (yn) — w

in Ep as n— oo in S, then w € Fw in E.
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Then F has a fixed point in E.

Remark 2.5. The definition of K,, is as follows. If y € C,, and y ¢ C,,1 then
Kn(y) = Fo(y) whereasify € Cpqq and y ¢ Cpyo then ICp,(Jn fin.nt1 j;il y) =
Ey(fn nnt1 dmt1 Y) U dn fnnt1 dmis Fut1(y) and so on.

Proof. For each n € N there exists (Theorem 1.2) y,, € C,, with v, € F,, y, in
E,,. Essentially the same reasoning as in Theorem 2.1 establishes the result. [

Remark 2.6. Note we could replace C,, CY,, above with C,, a subset of the
closure of Y,, in E, if Y is a closed subset of E (so in this case we can take
Y =C if C is a closed subset of E).

For our next definitions F and F, are as described in the beginning of
Section 2, C' is a convex subset of E, V' a bounded pseudo-open subset of E
and F :Y — 2F with Y C E. Also assume either U, = V,NC, C Y, for
each n € N (here U, =V, NC,) or U, is a subset of the closure of Y, in
E, for each n € N (with Y a closed subset of E). In addition assume for
each n € N that F, : U, — 2Fn.

Definition 2.1. F' € K(Y, E) if for each n € N we have F,, € K(@U,,E,) (ie.
for each n € N, F,, : U, — CK(E,) is a upper semicontinuous condensing
map with F,(z) N Ig—(x) # 0 for = € U,); here U, denotes the closure of
U, in C,.

Definition 2.2. F € Ky(Y,E) if F € K(Y,FE) and for each n € N we have

x ¢ F, (x) for x € 9U,,; here 9U,, denotes the boundary of U, in C,.

Definition 2.3. A map F € Ky(Y,E) is essential in Kp(Y, E) if for each
n € N we have that F,, € Kay, (Up, Ey) is essential in Kay, (U, En) (i.e.
for each n € N, every map G € Kpy, (U, E,) with Glay, = Fnloy, has a
fixed point in U, \ 0U,,).

Remark 2.7. Note if j, u,(0) € U, for each n € N then 0 € Ky(Y,E) is
essential in Ky (Y, E) by Remark 1.3.

Definition 2.4. (We assume j, u,(0) € U, for each n € N). F,0 €
Ky(Y,E) are homotopic in Kp(Y, E), written F' =0 in Kp(Y, E), if for each
n € N we have F, 2 j, 1,(0) in Koy, (Un, Ey).

Theorem 2.3. Let E and E,, be as described in the beginning of Section 2, C
a convex subset in E, V a bounded pseudo—open subset of E and F:Y — 2F
with Y C E. Also assume either U, =V, NC,, C Y, for each n € N (here
U,=V, ﬂCTJ or U, is a subset of the closure of Y, in E, for each n € N
(with 'Y a closed subset of E). Suppose 0 € VN C and for each n € N
assume F, : U, — 2P and also suppose F € Ky(Y,E) with (2.5) and the
following condition satisfied:

(2.19) F=0 in Ky(Y,E).
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Also assume (2.9) and (2.10) hold. Then F has a fized point in E.

Proof. Fix n € N. Now Remark 2.7 guarantees that the zero map (i.e. G(z) =
Jn pin (0)) is essential in Kay, (Un, En) for each n € N. Now Theorem 1.3
guarantees that Fj, is essential in Kpy, (m, E,) so in particular there exists
Yn € U, with y, € F,, y,. Essentially the same reasoning as in Theorem 2.1
(with Remark 2.3) establishes the result. O

Remark 2.8. If for each n € N the map F, : U, — CK(E,) is countably
condensing instead of condensing in Definition 2.1 (and throughout) then we
assume F,(z) N Ig—(x) # 0 for x € U, instead of F,(x) N 5 () # 0 for
x € U,, in Definition 2.1 (and throughout).

Remark 2.9. Notice 0 € VN C and (2.19) could be replaced by F' = G in
Ks(Y,E) (of course we assume G € Ky(Y, E) and we must specify G, for
n € N here).

Remark 2.10. Note Remark 2.4 holds in this situation also.

Theorem 2.4. Let E and E,, be as described in the beginning of Section 2, C
a convez subset in E, V a bounded pseudo—open subset of E and F :Y — 2F
with Y C E. Also assume either U, = V,, N C,, CY, for each n € N (here
U, =V,NC,) or U, is a subset of the closure of Y,, in E, for each n € N
(with 'Y a closed subset of E). Suppose 0 € VN C and for each n € N
assume Fy, : U, — 2F and also suppose F € Kp(Y,E) with (2.5), (2.9),
(2.10) and the following condition satisfied:

{ for each n€ N, y¢ AXF,y in E, for all

(2.20) A€ (0,1] and y € U,.

Then F has a fixed point in E.

Proof. Now (2.19) is immediate if we take for each n € N, H,(z,\) = A F(z)
for (z,\) € U, x [0,1]. Our result follows from Theorem 2.3. O

Next we present a Krasnoselskii type result for weakly inward maps in the
Fréchet space setting.

Theorem 2.5. Let E and E, be as described in the beginning of Section 2,
C a convex subset in E, U and V are bounded pseudo—open subsets of E
with 0 e U CUCV and F:Y — 28 with Y C E. Also assume either
W, =V,NC, CY, for each n € N (here W,, =V, NC,) or W, is a
subset of the closure of Y, in E, for each n € N (with Y a closed subset of
E). Also for each n € N assume F, : W,, — 2E» and suppose the following
conditions are satisfied:

(2.21) WiDW Do,
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for each n € N, F,, : W,, — CK(E,) is a upper
(2.22) semicontinuous condensing map with F,(z) N I (x) # 0

for x € W,,; here W, denotes the closure of W, in C,

(2.23) for each n€ N, y¢ XF,y in E, for all
. A€ [0,1] and ye€ oW,

(2.24) for each n € N, Jv, € C,,\ {0} with = ¢ F,z+d6v,
. for §>0 and z € 0Qy,; here Q, =U,NC,

for each n€ N, F,(.)+ pv, : Q, — CK(E,) is
(2.25) weakly inward with respect to C,, for all p >0
(i.e. [Fo(z)+poa)NIg—(x)#0 for x€9Q,)

(2.26) { for each n e N, the map K, : W, — 28 given in

Remark 2.11 is hemicompact

for every k€ N and any subsequence A C {k,k+1,....}
(2.27) if x € C, issuch that x € W, \Q, for some ne€ A
then there exists a v >0 with |ji fg.n jn ' 2|k >

and

if there exists a w €Y and a sequence {yn}tnen

with y, € W\, and y, € F,y, in E, such that
(2.28) for every k € N there exists a subsequence

SC{k+1,k+2,...} of N with jipiknijn* (yn) — w

in Ep as n— oo in S, then w € Fw in FE.

Then F has a fixed point in E.

Remark 2.11. The definition of K, is as follows. If y € W,, and y ¢ W,
then K,,(y) = F,,(y) and so on.

Proof. Fix n € N. Now C,, is convex and U,, V,, are open bounded subsets
of E, with j, un(0) € U, CV,. It just remains to show U, C U, C V,. Of
course since U C U C V we have

and since j,py, is continuous U, C jupin(U) C jn pn(U) = U,. Also we see

pn(U) C pn(V) (note U C V) so since 7, is an isometry

Ui’rz =Jn ,U'n(U) = Jn ,Un(U) C Jn ,Ufn(v) = Va.

Theorem 1.4 guarantees there exists y, € W, \ Q, with y, € F,y, in E,. As
in Theorem 2.1 there exists is a subsequence Ny of N and a z, € W; with
Jitndnt (yn) — 21 in By as n — oo in Ni. Also y, € W, \ Q, together
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with (2.22) yields |1 115 Jn ! (yn)|1 > v for n € N and so |z1]1 > 7. Let
N1 = N7\ {1}. Proceed inductively to obtain subsequences of integers

NfDONS Dy NEC{kk+1,..}

and z, € W, with jj Lk dnt (Yn) — 2, in Ey as n — oo in Nj. Note
jk/,l;k’k;+1jk:i1 Zp+1 = 2 in Ey for k € {1,2,..} and |zx|p > 7. Also let
Ny = N\ {k}. Now essentially the same reasoning as in Theorem 2.1 (with
Remark 2.3) guarantees the result. (]

Remark 2.12. Note (2.27) is only needed to guarantee that the fixed point y
satisfies |jr ur (y)|x > v for k € N. If we assume all the conditions in Theorem
2.5 except (2.27) then again F' has a fixed point in E but the above property
is not guaranteed.

We next present a Monch type result using Theorem 1.5.

Theorem 2.6. Let E and E, be as described in the beginning of Section 2,
XCE and F:Y — 2F with intX,, CY, foreach n € N or intX, isa
subset of the closure of Y, in E, for each n € N (with Y a closed subset
of E). Also for each n € N assume F, : int X, — 2P and suppose the
following conditions are satisfied:

(2.29) mt X1 DintXe D ...

(2.30) xo € pseudo — int (X)

for each n € N, F,:intX,, — CK(E,) is a upper
semicontinuous map

(2.31) {

for each ne N, M Cint X,, with
(2.32) M C co({jn pin(w0)} U Fo(M)) with M =C
and C C M countable, implies M is compact

(2.33) foreach n € N, y & (1 —A) jnpin(x0) + AFpy in E,
) for all A €(0,1] and y € dint X,

(2.34) for each n € N, the map K, :int X, — 25 given in
’ Remark 2.18 is hemicompact

and
if there exists a w €Y and a sequence {yn}tnen
with y, € ntX,, and y, € F,y, in E, such that
(2.35) for every k € N there exists a subsequence
SC{k+1,k+2,..} of N with jipikni,* (yn) — w
in Ep as n— oo in S, then w € Fw in E.

Then F has a fized point in E.
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Remark 2.13. The definition of K, is as follows. If y € intX,, and y ¢
int X,y1 then K,(y) = F,.(y) and so on.

Remark 2.14. Suppose in Theorem 2.6 we have

(229)* int X1 2 lnth 2 ..........

and

(2.34)*  for each n € N, the map K, :intX, — 25" is hemicompact
instead of (2.29) and (2.34); here if y € int X,, and y ¢ int X,,41 then K, (y) =
F,(y) and so on. In addition we assume F :Y — 2F with int X,, CY,, (or
it X, is a subset of the closure of Y;, in FE, if Y is a closed subset of E)

for each n € N is replaced by F : X — 2F and suppose (2.35) is true with
w €Y replaced by w € X. Then the result in Theorem 2.6 is again true.

Also we have the following result for Monch inward type maps (just apply
Theorem 1.6 in this case).

Theorem 2.7. Let E and E, be as described in the beginning of Section 2,
C a convex subset in E, V a pseudo-open bounded subset of E, 0 € VNC,
and F:Y —=2F with Y CFE, and U, =V, NC, CY, foreach ne N (here
U, =V,NGC,) or U, is a subset of the closure of Y,, in E, (with Y a closed
subset of E). Also for each n € N assume F,, : U, — 25 and suppose (2.5),
(2.7), (2.8) and the following conditions hold:

for each n € N, F, :U, — CK(E,) is
(2.36) upper semicontinuous and F,(U,) is bounded;
here U, denotes the closure of U, in C,
and
for each ne N, D C E, with
(2.37) D C co({jn tn(0)}UF,(DNU,)) and D=8
with B C D countable, implies D NU,, is compact.

In addition assume (2.9) and (2.10) hold. Then F has a fized point in E.
Remark 2.15. Note Remark 2.4 holds in this situation also.

Finally in this section we consider contractive type maps. First we consider
single valued maps (just apply Theorem 1.7).

Theorem 2.8. Let E and E, be as described in the beginning of Section 2,
XCFE and F:Y — FE with intX,, CY, for each n € N or int X, isa
subset of the closure of Y, in E, for each n € N (with Y a closed subset of
E). Also for each n € N assume F, :int X, — E, and suppose (2.29) and
the following conditions are satisfied:

(2.38) 0 € pseudo — int (X)

(2.39) for each n € N, F,(int X,,) is bounded
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for each n € N, there exists a continuous
nondecreasing function ¢, : [0,00) — [0, 00)

(2.40) satisfying ¢n(2) < z for z>0 such that
|Eyx— Fryln < on(lz —yln) forall z,y € int X,
and
(2.41) for each ne N, y# A XF,y in E, for all
’ A€ (0,1 and y € dint X,,.

Also assume (2.34) and (2.35) (with y, € Fpy, and w € Fw replaced by
Yn = Fryn and w = Fw) hold. Then F has a fized point in E.

Remark 2.16. Note there is an analogue of Remark 2.14 in this situation and
in the next also.

Theorem 2.9. Let E and E, be as described in the beginning of Section 2,
XCE and F:Y — 2F with intX,, CY,, foreach n € N or int X, isa
subset of the closure of Y, in E, for each n € N (with Y a closed subset
of E). Also for each n € N assume F, :int X,, — 2F» and suppose (2.29),
(2.38) and the following conditions are satisfied:

(2.42) for each n € N, F,(int X,,) is bounded

for each n€ N, F, :intX,, — C(E,), and there
exists a continuous strictly increasing function

(2.43) ¢n 1 [0,00) — [0,00) satisfying én(2) <z for z>0
such that Hp(Fpx, Fry) < on(lz — yln)
forall z,y €int X,

for each n € N, the map ¥, :[0,00) — [0,00),

given by <I> ( y=x— d)n( ), s strictly increasing,
(2.44) o 1(a) + ( ) < @, (a+b) for a,b>0,

with 21 0 (bl (t) <oo for t>0 and

Yicy (@ — () < dul(x) for x>0

and

(2.45) { for each ne N, y¢ AFyy in E, for all

A€ (0,1] and y € dint X,,.
Also assume (2.34) and (2.35) hold. Then F has a fized point.
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