DOI QR코드

DOI QR Code

Comparison of Two Dependent Agreements Using Test of Marginal Homogeneity

주변동질성검정법을 이용한 종속된 두 일치도의 비교

  • Oh, Myong-Sik (Department of Data Management, Pusan University of Foreign Studies)
  • 오명식 (부산외국어대학교 데이터경영학과)
  • Published : 2008.07.16

Abstract

Oh (2008) has proposed the one-sided likelihood ratio test of the equality of two agreement measures. However the use of this test may be limited since the computations of test statistic and critical value are not easy. We propose a test for comparing two dependent agreements using some well known tests for marginal homogeneity, for instance, Bhapkar test, Stuart-Maxwell test. Data obtained from 2008 world figure skating championship ladies single is analyzed for illustration purposes.

종속된 두 개의 일치도를 비교하는 간단한 검정법을 제시하였다. Oh (2008)에 의해 연구된 우도비 검정은 순위 제약하의 검정기법을 사용함으로서 통계량의 계산이나 유의확률을 구하기가 까다롭다. 본 논문에서는 기존의 주변동질성(marginal Homogeneity)에 관한 검정법 즉 Bhapkar 혹은 Stuart-Maxwell 검정을 이용할 수 있는 검정법을 제시하였다. 제시된 검정법을 2008년 세계피겨스케이팅선수권대회의 여자싱글부분의 심판자료를 분석하였다.

Keywords

References

  1. Agresti, A. (2002). Categorical Data Analysis, John Wiley & Sons, New York
  2. Bhapkar, V. P. (1966). A note on the evidence of two test criteria for hypotheses in categorical data, Journal of the American Statistical Association, 61, 228-235 https://doi.org/10.2307/2283057
  3. Caussinus, H. (1966). Contribution a l'analyse statistique des tableaux de correlation, Annales de la faculte des sciences de Toulouse, 29, 77-182
  4. Cohen, J. (1966). A coefficient of agreement for nominal scales, Educational and Psychological Measurement, 20, 37-46 https://doi.org/10.1177/001316446002000104
  5. Donner, A., Shoukri, M. M., Klar, N. and Bartfay, E. (2000). Testing the equality of two dependent kappa statistics, Statistics in Medicine, 19, 373-387 https://doi.org/10.1002/(SICI)1097-0258(20000215)19:3<373::AID-SIM337>3.0.CO;2-Y
  6. Fleiss, J. L. and Cohen, J. (1973). The equivalence of weighted kappa and the intraclss correlation coefficient as measures of reliability, Educational Psychology Measurement, 33, 613-619 https://doi.org/10.1177/001316447303300309
  7. Lang, J. B. (2007). 'Maximum Likelihood Fitting of Multinomial-Poisson Homogeneous (MPH) Models for Contingency Tables using MPH.FIT.' online html document, 'Available from: http://www.stat.uiowa.edu/ jblang/mph.fitting/mph.fit.documentation.htm'
  8. McKenzie, D. P., MacKinnon, A. J., Peladeau, N., Onghena, P., Bruce, P. C., Clarke, D. M., Harrigan, S. and McGorry, P. D. (1996). Comparing correlated kappas by resampling: Is one level of agreement significantly different from another?, Journal of Psychiatric Research, 30, 483-492 https://doi.org/10.1016/S0022-3956(96)00033-7
  9. Oh, M. (2008). Inference on measurements of agreement using marginal association, Journal of the Korean Statistical Society, To Appear
  10. Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference, John Wiley & Sons, Chichester
  11. Schuster, C. and von Eye, A. (1998). Modeling turn-over tables using the GSK approach, Methods of Psychological Research Online, 3, 39-53, Available from: http://www.pabst-publicatioers.de/mpr/
  12. Stuart, A. A. (1955). A test for homogeneity of the marginal distributions in a two-way classification, Biometrika, 42, 412-416 https://doi.org/10.1093/biomet/42.3-4.412
  13. Sun, X. and Yang, Z. (2008). Generalized McNemar's test for homogeneity of the marginal distributions, SAS Grobal Forum 2008, Paper 382-2008
  14. Uebersax, J. S. (2006). User Guide for the MH Program (Version 1.21), Computer program documentation, Available from: http://ourworld.compuserve.com/homepages/jsuebesax/mh.htm