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Parallel Coordinate Plots of Mixed-Type Data

Il Youp Kwak", Myung-Hoe Huh?

Abstract

Parallel coordinate plot of Inselberg (1985) is useful for visualizing dozens of
variables, but so far the plot’s applicability is limited to the variables of numerical
type. The aim of this study is to extend the parallel coordinate plot so that it
can accommodate both numerical and categorical variables. We combine Hayashi’s
(1950, 1952) quantification method of categorical variables and Hurley’s (2004)
endlink algorithm of ordering variables for the parallel coordinate plot. In line with
our former study (Kwak and Huh, 2008), we develop Andrews’ type modification

of conventional straight-lines parallel coordinate plot to visualize the mixed-type
data.

Keywords: Statistical graphics; parallel coordinate plot; Andrews’ plot; mixed-type
data; endlink algorithm; Hayashi’s quantification methods.

1. Background and Aim

For the dataset with p (> 3) numerical variables, we use more often parallel coordi-
nate plot{PCP) of Inselberg (1985) because of its compactness. Compared with p x p
scatterplot matrix, conventional PCP contains only p — 1 diagrams. In PCP, we may re-
arrange the order of variables to ease the data exploration, using Hurley’s (2004) endlink
algorithm which joins the nearest endpoints of ordered clusters. For instance, suppose
that the inter-distances among five objects(variables) X1 to X5 are specified as follows:

00 03 01 07 04
03 00 06 1.0 09
D=1 01 06 00 08 0.5
0.7y 1.0 08 00 0.2
04 09 05 02 00

Then, X1 and X3 are joined firstly, since dy3 is the smallest. Secondly, X4 and X5
are joined, since dys is the second smallest. Thirdly, X1 and X2 are joined to yield the
ordered sequence of X2-X1-X3. Fourthly, X1 and X5 are selected for the next join, but
the pair is not acceptable since X1 is not an endpoint of the sequences. Instead, X3 and
X35 are joined. Hence X2-X1-X3-X5-X4 forms the completed list.
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Applicability of the endlink algorithm to PCP, however, is limited to the dataset
or subset data consisting of numerical variables. The aim of this study is to extend
the parallel coordinate plot so that it can accommodate both numerical and categorical
variables.

Simply consider the dataset of n observations containing two numerical and two
categorical variables, X, X9, V1, V5. We assume that two numerical variables Xy and Xy
are given in standardized forms, z; and z,, with mean 0 and standard deviation(SD)
1. For the variable V| with &, categories, we assume it is represented in dummy coding
matrix Zy with k; columns, one column for each category. Similarly, we represent the
variable V, with kg categories by the dummy coding matrix Zo with kz columns.

There are three types in the pair of two variables: numerical-numerical, numerical-
categorical(or categorical-numerical) and categorical-categorical. For numerical-numeri-
cal pair, the association of two variables is measured by Pearson’s product moment
correlation and the data points on the parallel axis are linked as in conventional PCP.
For two other types of pairs, we apply Hayashi’s {1950, 1952) quantification methods to
quantify categories and measure the association between variables as follows.

For numerical-categorical pair, say X, and V; with k; categories, Hayashi’s quantifi-

cation can be formulated as

tz
max 1219 (1.1)
ay n—1

subject to @} Z{Z1a; / (n — 1) =1 and 1} Zja; =0,

where z1 isn x 1, Z; is n X k1, a1 is the k1 x 1 vector of quantified values for k1 categories
in V; and 1, is the n x 1 vector of elements all equal to 1. The second restriction in (1.1)
requires that the n x 1 quantified vector Zia; of V; should have mean 0 and the first
restriction together with the second restriction requires that Zya; should have SD 1. By
Lagrangian multiplier method, one can easily show that

a; = DI—IZ{.L.] i

2t 2 D7 2\ 2
(257)

where Dy = Z{Z; is the ky x k; diagonal matrix, with diagonal elements equal to the ob-
served frequencies of respective categories in ;. The optimized value of (1.1) is equal to
Pearson’s correlation between X, and Zya;, the quantified variable of V3. This method,
known as Hayashi’s Quantification Method 1 or 11 in Japan (Huh, 1999), can be consid-
ered as regression analysis on dummy variables or a special case of canonical correlation
analysis.

For categorical-categorical pair, say V1 with k) categories and V5 with & categories,
Hayashi’s quantification can be formulated as

ai Zi Zzaz

max —————— (1.2)
a3,a2 n-—1

subject to a}ZiZya1/(n—1)=1
and ahZiZsas [ (n~1) =1, 1, Zsas =0,
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where Z; is n X ky, Z5 18 n X ko, a; and a,, respectively, are the k; x 1 and kg x 1
vectors of quantification values for k; categories in V; and for ks categories in V,. It is
well known that a; and a; can be obtained via the singular value decomposition of

G =D;*ZiZ,D; ¢,

where Dy = Z!Z; and Dy = Z:Z,. More specifically, the solution vectors a1 and ag of

(2.1) are given by
_1 _1
Dy 2 D, 2
a, = w; and a9 = ug,
n—1 n—1

where 1 and us are left and right singular vectors of k; x kg matrix G corresponding to
the largest singular value except the trivial root. The optimized value of (2.1) is equal
to Pearson’s correlation between Zjay and Zpas, the quantified variables of V3 and V,
respectively. This method, known as Hayashi’s Quantification Method III (Huh, 1999),
is closely connected to correspondence analysis (Huh, 1989). There appeared several
papers on correspondence analysis in Korean journals (Yang and Huh, 1999; Choi and
Huh, 1999; Choi et al., 2005).

In that way, we may determine the correlation between any types of variable. In the
next section, we will propose a PCP for mixed-type data via Hurley’s endlink algorithm,
sequentially applying Hayashi’s quantification methods to categorical variables.

2. Modification of Endlink Algorithm

Parallel coordinate plot appears differently depending on the order of variables. For
the purpose, we want to use Hurley’s (2004) endlink algorithm which connects the nearest
endpoints of ordered sequence of variables. The problem is that the distances between
pairs of variables are not readily available in the case of mixed-type data.

We propose a modified version of Hurley’s (2004) endlink algorithm to determine
the order variables of numerical and/or categorical type in the parallel coordinate plot.
Suppose that there are variables of numerical and/or categorical type.

Step 1: We make a p X p correlation matrix R among variables of numerical and/or
categorical type. For the pair of variables of which at least one variable is not
numerical, we use Hayashi’s quantification methods to acquire the correlation co-
efficient. From R = {r;;}, we derive the distance matrix D = {d;;} by

dij =2(1—7‘¢j), for ’i,j;:l,...,p.

Step 2: Join the closest ends of chained variables. If all variables are chained to form a
single cluster, then stop.

Step 3: If any variable of newly joined pair is categorical, replace its categorical codes
by the quantified values related to the counter variable and change the variable
type from categorical to numerical. Return to Step 1.
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We will illustrate our algorithm by two scenarios for the simulated dataset in which
two variables(X; and X,) are numerical and two variables(V; and V3) are categorical.

Scenario 1.

Cycle 1: V1 and V; are quantified related to X7 and X5, all separately. Also, V7 and
V2 are mutually quantified. The pair of X; and V; is selected. V; is replaced by
quantified values V; related to X; and the variable type is changed to numerical.
We have a chain of V; — X;.

Cycle 2: V3 is quantified related to X1, X and Vi, all separately. The pair of X, and
X5 is selected. Thus we have a chain of V| — X; — Xo.

Cycle 3: V; is quantified related to X, and Vi, all separately. The pair of Xy and Vj
is selected. Categorical V3 is quantified with respect to X», turned into numerical
V5. Thus we have a chain of Vi — X; — Xy — V5.

Scenario 2.

Cycle 1: V7 and V; are quantified related to X; and X», all separately. Also, V; and V5
are mutually quantified. The pair of V; and V; is selected. V; and V; are replaced
by quantified values V; and V, and the variable type is changed to numerical. We
have a chain of Vi — V.

Cycle 2: The pair of X; and V; is selected. Thus we have a chain of X; — V; — 172
Cycle 3: The pair of X5 and X is selected. Thus we have a chain of Xo — X; — Vi— 172

In Scenario 1, we simulated 100(=n) observations of (X1, X2, X3, X4) from a multi-
variate normal distribution with the zero means and the covariance matrix

1.0 0.6 08 0.0
06 1.0 02 04
0.8 02 10 0.1
00 04 01 1.0

5 =

Then, (X3, X4) are discretized into categorical variables (V1, V5) via

1, if X3 <-1.5,
2, if —1.5<X3<-0.5, 1, if X, <-1,
Vi=4q3, if —0.5< X3<0.5, Vo=42, if —1<X4<1, (2.1)
4, if 0.5 < X5 < 1.5, 3, if X4>1.
5, if X5 > 1.5,
Running our algorithm, V; and V5 are quantified to
—2.28
3 -1.15 ~ -1.88
Vi = 0.06 |, Vo= —-0.07
0.93 - 1.57

1.64
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PCP for {(X1,X2,V1,¥2) APCP for (X1,X2,V1,V2)
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Figure 2.1: PCP (left) and APCP (right) for the simulated dataset of Scenario 1.

PCP for (X1,X2,V1,V2) APCP foE {(X1,X2,V1,V2)

Figure 2.2: PCP (left) and APCP (right) for the simulated dataset of Scenario 2.

and we have the ordered cluster V; — X1 — X2 — V,. Figure 2.1 shows the PCP (left)
and Andrews’ type PCP (right). Andrews’ type PCP or APCP is the Andrews’ plot
(Andrews, 1972) for the orthogonal-transformed dataset, so that the variables appears
in the designated order (Kwak and Huh, 2008). In Scenario 2, we simulated 100(=n)
observations of (Xj, X2, X3, X4) from a multivariate normal distribution with the zero
means and the covariance matrix

1.0 04 06 02
04 1.0 00 01
06 00 1.0 038
02 01 08 10

Sy =

Then, (X3, X4) are discretized into categorical variables (V,, V2) according to (2.1).
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APCP for Cars93 data
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Figure 3.1: APCP for Cars93 Data.

Running our algorithm, Vi and V5 are quantified to

—3.02
—0.98 —~2.00

Vi=| -001 |, Vo = 0.08 |,
0.88 1.55
1.70

and we have the ordered cluster X5 — X; — Vi — Vi. Figure 2.2 shows the PCP (left) and
Andrews’ type PCP (right).

3. Cars93 Data

Cars93 data, available at R’s MASS library, consists of 93 records on automobile mod-
els. Among 27 characteristics available for each automobile, we included 20 variables for
analysis: (Hereafter, categorical variables are underlined) Type, AirBags, DriverTrain,
Cylinders, EngineSize, Man.trans.avail, Fuel.tank.capacity, Passengers, Leng-
th, Wheelbase, Width, Weight, Origin, MPG.city, MPG.highway, Horsepower, RPN,
Rev.per-.mile, Turn.circle and Price. We omitted one record which has non-numeri-
cal value on Cylinders.

Figure 3.1 shows APCP of Cars93 data set. The individual curves are colored by
Price {light color for low price and dark color for high price). In the plot, we may
find the categorical variable Type, quantified to —1.21 for “Small”, —0.93 for “Sporty”,
—0.21 for “Compact”, 0.55 for “Midsize”, 1.37 for “Van” and 1.50 for “Large”, are
located between two numerical variables, Fuel.tank.capacity and Wheelbase. Average
Fuel.tank.capacity by Type are —1.22, —0.30, —0.17, 0.56, 1.32, 0.75, while average
Wheelbase by Type are ~1.10, —0.84, —0.19, 0.50, 1.24, 1.36 (in standardized unit).
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Figure 4.1: APCP’s for German Credit Data: Good credit cases as reference (Upper),
Contrasted to bad credit cases as supplementary observations {Lower).

We clearly see that MPG.highway, MPG.city, and Rev.per.mile form one cluster of
variables with inter-correlations 0.94, 0.70 and Price, Horsepower, Cylinders, EngineS-
ize, Width, Weight, Fuel.tank.capacity, Type, Wheelbase, Length, and Turn.circle

form another group with inter-correlations 0.78, 0.79, 0.69, 0.87, 0.88, 0.90, 0.82, 0.90,
0.82, 0.74.

4. German Credit Data

German Credit data, available at http://mlearn.ics.uci.edu/MLSummary.html, con-
tains financial and socio-demographic information on 1000(= n) individuals. Number
of measured variables are 20(= p) except the classification code for credit outcome
(good/bad). Among the variables, seven variables are numerical and the remaining
thirteen variables are categorical.
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German Credit : Bad credit individuals® mean curve
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Figure 4.2: Mean curve and its 95% confidence limits of bad credit cases: Derived from
the lower plot of Figure 4.1

The upper APCP of Figure 4.1 shows the good credit cases as reference. In contrast,

the lower APCP shows bad credit cases as supplementary observations. Overall features
of two plots are not lucid, so we draw the mean curve and plot its 95% confidence limits

of

bad credit cases separately in Figure 4.2.
In Figure 4.2, we can see that bad credit individuals tend to gather at

1) negative values of X6 (savings: Category 1=—0.89, 4=0.63, 2=1.01, 3=1.21,
5=1.23) and X1 (checking: 1=—1.86, 3=—0.76, 2=0.28, 4=0.72),

2) positive values of X20 (foreign worker: 2=-4.49, 1=0.22), X2 (duration) and X5
(amount),

3) positive values of X19 (telephone: 1=—0.84, 2=1.18), X 17 (job: 2=-0.41, 3=—0.34,
4=1.33, 1=5.48) and X7 (employment: 3=—0.41, 4=-0.22, 2=—0.04, 5=-0.15,
1=4.08),

4) positive values of X15 (housing: 2=-0.35, 1=—0.16, 3=3.14),
5) negative values of X13 (age),

6) negative values of X16 (number of credits) and X3 (history: 1=-0.91, 2=-0.90,
0=0.67, 3=0.67, 4=1.21).

Thus bad credit individuals can be typified by
1) savings (X6) less than 100 and checking (X1) < 0,
2) foreign worker (X20), large duration (X2) and larger amount (X5),

3) telephone owner (X19), manager/self-employed/qualified employee/officer (X17)
and unemployed (X7),
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4) free house (X15),
5) young (X13),

6) small number of credits (X16) and all credits paid back duly/existing credits paid
duly till now (X3).

In that way, we see the difference between two groups of individuals with additional
information on the clustered list of variables carrying the disparity.

5. Concluding Remark

This study is aimed to represent the mixed type data on PCP. Combining and mod-
ifying Hayashi’s quantification method of categorical variables and Hurley’s endlink al-
gorithm for ordering variables, we made a PCP and its variation for mixed type data.
Usefulness of proposed graphs are demonstrated via two real datasets, Cars93 and Ger-
man Credit data.
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