Mutanase Induction in Trichoderma harzianum by Cell Wall of Laetiporus sulphureus and its Application for Mutan Removal from Oral Biofilms

  • Wiater, Adrian (Department of Industrial Microbiology, Maria Curie-Sklodowska University) ;
  • Szczodrak, Janusz (Department of Industrial Microbiology, Maria Curie-Sklodowska University) ;
  • Pleszczynska, Malgorzata (Department of Industrial Microbiology, Maria Curie-Sklodowska University)
  • Published : 2008.07.31

Abstract

The cell wall material from fruiting bodies of Laetporus sulphureus has been suggested as a new alternative to mutan for the mutanase induction in Trichoderma harzianum. Structural analyses revealed that the cell wall fraction from this polypore fungus contained 56.3% of (1$\rightarrow$3)-linked $\alpha$-glucans. When the strain T. harzianum F-340 was grown on a cell wall preparation from L. sulphureus, the maximal enzyme productivity obtained after 3 days of cultivation was 0.71 U/ml. This yield was about 1.8-fold higher than that achieved on mutan, known so far as the best, but expensive and inaccessible, inducer of mutanase production. Cell-wall-induced mutanase showed a high hydrolytic potential in reaction with a dextranase-pretreated mutan, where maximal degrees of saccharification and solubilization of this biopolymer (80% and 100%, respectively) were reached in 3 h at 45$^{\circ}C$. The mutanase preparation was also effective in degradation of streptococcal mutan and its removal from oral biofilms, especially in a mixture with dextranase.

Keywords

References

  1. Davoli, P., A. Mucci, L. Schenetti, and R. W. S. Weber. 2005. Laetiporic acids, a family of non-carotenoid polyene pigments from fruit bodies and liquid cultures of Laetiporus sulphureus (Polyporales, Fungi). Phytochemistry 66: 817-823 https://doi.org/10.1016/j.phytochem.2005.01.023
  2. Ershova, E. Y., O. V. Tikhonova, L. M. Lurie, O. V. Efremenkova, O. V. Kamzolkina, and Y. V. Dudnik. 2003. Antimicrobial activity of Laetiporus sulphureus strains in submerged culture. Antibiot. Khimioter. 48: 18-22
  3. Guggenheim, B. and R. Haller. 1972. Purification and properties of an $\alpha$-(1-3) glucanohydrolase from Trichoderma harzianum. J. Dent. Res. 51: 394-402 https://doi.org/10.1177/00220345720510022701
  4. Grun, C. H., F. Hochstenbach, J. H. Sietsma, F. M. Klis, J. P. Kamerling, and J. F. G. Vliegenthart. 2003. Evidence for two conserved mechanisms of cell-wall $\alpha$-glucan biosynthesis in fungi, pp. 116-132. In C. H. Grun (ed.), Structure and Biosynthesis of Fungal $\alpha$-Glucans. University of Utrecht, Utrecht
  5. Inoue, M., T. Yakushiji, J. Mizuno, Y. Yamamoto, and S. Tanii. 1990. Inhibition of dental plaque formation by mouthwash containing an endo-$\alpha$-1,3 glucanase. Clin. Prevent. Dent. 12: 10-14
  6. Jelsma, J. and D. R. Kreger. 1978. Observations of the cell-wall compositions of the bracket fungi Laetiporus sulphureus and Piptoporus betulinus. Arch. Microbiol. 119: 249-253 https://doi.org/10.1007/BF00405403
  7. Kopec, L. K., A. M. Vacca-Smith, and W. H. Bowen. 1997. Structural aspects of glucans formed in solution and on the surface of hydroxyapatite. Glycobiology 7: 927-934
  8. Mandels, M., F. W. Parrish, and E. T. Reese. 1962. Sophorose as an inducer of cellulase in Trichoderma viride. J. Bacteriol. 83: 400-408
  9. Marotta, M., A. Martino, A. De Rosa, E. Farina, M. Carteni, and M. De Rosa. 2002. Degradation of dental plaque glucans and prevention of glucan formation using commercial enzymes. Proc. Biochem. 38: 101-108 https://doi.org/10.1016/S0032-9592(02)00058-4
  10. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-38038
  11. Quivey, R. G. and P. S. Kriger. 1993. Raffinose-induced mutanase production from Trichoderma harzianum. FEMS Microbiol. Lett. 112: 307-312 https://doi.org/10.1111/j.1574-6968.1993.tb06467.x
  12. Ryu, S. J., D. Kim, H. J. Ryu, S. Chiba, A. Kimura, and D. F. Day. 2000. Purification and partial characterization of a novel glucanhydrolase from Lipomyces starkeyi KSM 22 and its use for inhibition of insoluble glucan formation. Biosci. Biotechnol. Biochem. 64: 223-228 https://doi.org/10.1271/bbb.64.223
  13. Schacterle, G. R. and R. L. Pollack. 1973. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal. Biochem. 51: 654-655 https://doi.org/10.1016/0003-2697(73)90523-X
  14. Somogyi, M. 1945. A new reagent for the determination of sugars. J. Biol. Chem. 160: 61-68
  15. Tsumori, H. and H. Kuramitsu. 1997. The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: Essential role of the GtfC enzyme. Oral Microbiol. Immunol. 12: 274-280 https://doi.org/10.1111/j.1399-302X.1997.tb00391.x
  16. Tsuchiya, R., C. C. Fuglsang, C. Johansen, and D. Aaslyng. 1998. Effect of recombinant mutanase and recombinant dextranase on plaque removal. J. Dent. Res. 77: 2713
  17. Wiater, A., A. Choma, and J. Szczodrak. 1999. Insoluble glucans synthesized by cariogenic streptococci: A structural study. J. Basic Microbiol. 39: 265-273 https://doi.org/10.1002/(SICI)1521-4028(199909)39:4<265::AID-JOBM265>3.0.CO;2-0
  18. Wiater, A., M. Pleszczynska, J. Szczodrak, and T. Bachanek. 2005. Removal of denture plaque by selected glucanolytic enzymes. Dent. Med. Probl. 42: 241-247
  19. Wiater, A. and J. Szczodrak. 2002. Selection of strain and optimization of mutanase production in submerged cultures of Trichoderma harzianum. Acta Biol. Hung. 53: 389-401 https://doi.org/10.1556/ABiol.53.2002.3.15
  20. Wiater, A., J. Szczodrak, and M. Pleszczy ska. 2005. Optimization of conditions for the efficient production of mutan in streptococcal cultures and post-culture liquids. Acta Biol. Hung. 56: 137-150 https://doi.org/10.1556/ABiol.56.2005.1-2.14
  21. Wiater, A., J. Szczodrak, and J. Rogalski. 2004. Hydrolysis of mutan and prevention of its formation in streptococcal films by fungal $\alpha$-D-glucanases. Proc. Biochem. 39: 1481-1489 https://doi.org/10.1016/S0032-9592(03)00281-4
  22. Zonneveld, B. J. M. 1971. Biochemical analysis of the cell wall of Aspergillus nidulans. Biochim. Biophys. Acta 249: 506-514 https://doi.org/10.1016/0005-2736(71)90126-X