CBT-SL5, a Bacteriocin from Enterococcus faecalis, Suppresses the Expression of Interleukin-8 Induced by Propionibacterium acnes in Cultured Human Keratinocytes

  • Lee, Ye-Jin (Department of Dermatology, College of Medicine, The Catholic University of Korea) ;
  • Choi, Hye-Jeong (Department of Dermatology, College of Medicine, The Catholic University of Korea) ;
  • Kang, Tae-Wook (Department of Dermatology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Hyung-Ok (Department of Dermatology, College of Medicine, The Catholic University of Korea) ;
  • Chun, Myung-Jun (Research Institute of Cell Engineering, Cell Biotech Co., Ltd.) ;
  • Park, Young-Min (Department of Dermatology, College of Medicine, The Catholic University of Korea)
  • 발행 : 2008.07.31

초록

Propionibacterium acnes is known to playa pivotal role in the pathogenesis of acne vulgaris. CBT-SL5 is one of the antimicrobial peptides from Enterococcus faecalis SL5, and it has shown antimicrobial activity against P. acnes. The aim of this study was to investigate the anti-inflammatory effect of CBT-SL5 on the inflammation induced by P. acnes in cultured human keratinocyes. Cultured human keratinocytes derived from neonatal foreskin were treated with heat-killed P. acnes to induce inflammation, and then various concentrations of CBT-SL5 were added to the P. acnes-treated keratinocytes. The mRNA expression and protein secretion of interleukin (IL)-8, an inflammation marker, was analyzed by real-time reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. We also analyzed the nuclear factor-kappa B (NF-$\kappaB$) p65 translocation by performing immunofluorescent staining. P. acnes treatment up regulated the IL-8 mRNA expression in the keratinocytes, and this was brought about through both toll-like receptor (TLR)2 and TLR4. At the concentrations of 10, 50, and 100 ng/ml, CBT-SL5 significantly down regulated the P. acnes-induced IL-8 mRNA expression and protein production (p<0.05). At 6 hand 12 h of the treatment, CBT-SL5 significantly suppressed the P. acnes-induced IL-8 mRNA expression. Secretion of IL-8 protein was significantly reduced at 24 h. The functional inhibitory activity of CBT-SL5 was shown by CBT-SL5 suppressing the P. acnes-induced NF-$\kappaB$ translocation from the cytoplasm to the nucleus. These results demonstrated that CBT-SL5 suppressed the P. acnes-induced IL-8 expression in keratinocytes. Therefore, CBT-SL5 may be a novel anti-inflammatory treatment for acne.

키워드

참고문헌

  1. Baldwin, A. S. Jr. 1996. The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu. Rev. Immunol. 14: 649-683 https://doi.org/10.1146/annurev.immunol.14.1.649
  2. Bowe, W. P., J. C. Filip, J. M. DiRienzo, A. Volgina, and D. J. Margolis. 2006. Inhibition of Propionibacterium acnes by bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. J. Drugs Dermatol. 5: 868-870
  3. Chen, Q., T. Koga, H. Uchi, H. Hara, H. Terao, Y. Moroi, K. Urabe, and M. Furue. 2002. Propionibacterium acnes-induced IL-8 production may be mediated by NF-kappaB activation in human monocytes. J. Dermatol. Sci. 29: 97-103 https://doi.org/10.1016/S0923-1811(02)00013-0
  4. Downing, D. T., M. E. Stewart, P. W. Wertz, and J. S. Strauss. 1986. Essential fatty acids and acne. J. Am. Acad. Dermatol. 14: 221-225 https://doi.org/10.1016/S0190-9622(86)70025-X
  5. Eady, E. A. 1998. Bacterial resistance in acne. Dermatology 196: 59-66 https://doi.org/10.1159/000017869
  6. Eady, E. A., J. H. Cove, K. T. Holland, and W. J. Cunliffe. 1989. Erythromycin resistant propionibacteria in antibiotic treated acne patients: Association with therapeutic failure. Br. J. Dermatol. 121: 51-57
  7. Eady, E. A., C. E. Jones, K. J. Gardner, J. P. Taylor, J. H. Cove, and W. J. Cunliffe. 1993. Tetracycline-resistant propionibacteria from acne patients are cross-resistant to doxycycline, but sensitive to minocycline. Br. J. Dermatol. 128: 556-560 https://doi.org/10.1111/j.1365-2133.1993.tb00235.x
  8. Ghosh, S., M. J. May, and E. B. Kopp. 1998. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16: 225-260 https://doi.org/10.1146/annurev.immunol.16.1.225
  9. Han, K. S., Y. H. Kim, S. H. Kim, and S. J. Oh. 2007. Characterization and purification of acidocin 1B, a bacteriocin produced by Lactobaciillus acidophilus GP1B. J. Microbiol. Biotechnol. 17: 774-783
  10. Heymann, W. R. 2006. Toll-like receptors in acne vulgaris. J. Am. Acad. Dermatol. 55: 691-692 https://doi.org/10.1016/j.jaad.2006.05.049
  11. ack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200
  12. Jappe, U. 2003. Pathological mechanisms of acne with special emphasis on Propionibacterium acnes and related therapy. Acta Derm. Venereol. 83: 241-248 https://doi.org/10.1080/00015550310016463
  13. Jugeau, S., I. Tenaud, A. C. Knol, V. Jarrousse, G. Quereux, A. Khammari, and B. Dreno. 2005. Induction of toll-like receptors by Propionibacterium acnes. Br. J. Dermatol. 153: 1105-1113 https://doi.org/10.1111/j.1365-2133.2005.06933.x
  14. Karin, M. and M. Delhase. 2000. The I kappa B kinase (IKK) and NF-kappa B: Key elements of proinflammatory signalling. Semin. Immunol. 12: 85-98 https://doi.org/10.1006/smim.2000.0210
  15. Kim, J., M. T. Ochoa, S. R. Krutzik, O. Takeuchi, S. Uematsu, A. J. Legaspi, et al. 2002. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J. Immunol. 169: 1535-1541 https://doi.org/10.4049/jimmunol.169.3.1535
  16. Lee, K. H., J. Y. Park, S. J. Jeong, G. H. Kwon, H. J. Lee, H. C. Chang, D. K. Chung, J. H. Lee, and J. H. Kim. 2007. Characterization of paraplantaricin C7, a novel bacteriocin produced by Lactobacillus paraplantarum C7 isolate from kimchi. J. Microbiol. Biotechnol. 17: 287-296
  17. Marta Guarna, M., R. Coulson, and E. Rubinchik. 2006. Antiinflammatory activity of cationic peptides: Application to the treatment of acne vulgaris. FEMS Microbiol. Lett. 257: 1-6 https://doi.org/10.1111/j.1574-6968.2006.00156.x
  18. McInturff, J. E., S. J. Wang, T. Machleidt, T. R. Lin, A. Oren, C. J. Hertz, et al. 2005. Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against Propionibacterium acnes. J. Invest. Dermatol. 125: 256-263 https://doi.org/10.1111/j.0022-202X.2005.23805.x
  19. Nagaoka, I., S. Yomogida, H. Tamura, and M. Hirata. 2004. Antibacterial cathelicidin peptide CAP11 inhibits the lipopolysaccharide (LPS)-induced suppression of neutrophil apoptosis by blocking the binding of LPS to target cells. Inflamm. Res. 53: 609-622 https://doi.org/10.1007/s00011-004-1300-2
  20. Nagy, I., A. Pivarcsi, A. Koreck, M. Szell, E. Urban, and L. Kemeny. 2005. Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J. Invest. Dermatol. 124: 931-938 https://doi.org/10.1111/j.0022-202X.2005.23705.x
  21. Nam, C., S. Kim, Y. Sim, and I. Chang. 2003. Anti-acne effects of Oriental herb extracts: A novel screening method to select anti-acne agents. Skin Pharmacol. Appl. Skin Physiol. 16: 84-90 https://doi.org/10.1159/000069030
  22. Oh, S., S. H. Kim, Y. Ko, J. H. Sim, K. S. Kim, S. H. Lee, S. Park, and Y. J. Kim. 2006. Effect of bacteriocin produced by Lactococcus sp. HY 449 on skin-inflammatory bacteria. Food Chem. Toxicol. 44: 1184-1190 https://doi.org/10.1016/j.fct.2005.08.008
  23. Sader, H. S., K. A. Fedler, R. P. Rennie, S. Stevens, and R. N. Jones. 2004. Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: Spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob. Agents Chemother. 48: 3112-3118 https://doi.org/10.1128/AAC.48.8.3112-3118.2004
  24. Scott, M. G., D. J. Davidson, M. R. Gold, D. Bowdish, and R. E. Hancock. 2002. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 169: 3883-3891 https://doi.org/10.4049/jimmunol.169.7.3883
  25. Scott, M. G., M. R. Gold, and R. E. Hancock. 1999. Interaction of cationic peptides with lipoteichoic acid and Gram-positive bacteria. Infect. Immun. 67: 6445-6453
  26. Scott, M. G. and R. E. Hancock. 2000. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 20: 407-431
  27. Scott, M. G., A. C. Vreugdenhil, W. A. Buurman, R. E. Hancock, and M. R. Gold. 2000. Cutting edge: Cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J. Immunol. 164: 549-553 https://doi.org/10.4049/jimmunol.164.2.549
  28. Takeda, K. and S. Akira. 2004. TLR signaling pathways. Semin. Immunol. 16: 3-9
  29. Tan, H. H. 2003. Antibacterial therapy for acne: A guide to selection and use of systemic agents. Am. J. Clin. Dermatol. 4: 307-314 https://doi.org/10.2165/00128071-200304050-00002
  30. Van Reenen, C. A., W. H. Van Zyl, and L. M. Dicks. 2006. Expression of the immunity protein of plantaricin 423, produced by Lactobacillus plantarum 423, and analysis of the plasmid encoding the bacteriocin. Appl. Environ. Microbiol. 72: 7644-7651 https://doi.org/10.1128/AEM.01428-06
  31. Vowels, B. R., S. Yang, and J. J. Leyden. 1995. Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: Implications for chronic inflammatory acne. Infect. Immun. 63: 3158-3165
  32. Xiao, W. 2004. Advances in NF-kappaB signaling transduction and transcription. Cell. Mol. Immunol. 1: 425-435
  33. Zachariae, C. O. 1993. Chemotactic cytokines and inflammation. Biological properties of the lymphocyte and monocyte chemotactic factors ELCF, MCAF and IL-8. Acta Derm. Venereol. Suppl. (Stockh) 181: 1-37
  34. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395 https://doi.org/10.1038/415389a