References
- Amanullah, A., L. H. Christensen, K. Hansen, A. W. Nienow, and C. R. Thomas. 2002. Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnol. Bioeng. 77: 815-826 https://doi.org/10.1002/bit.10181
-
Beyond Petroleum. 2005. Statistical Review of World Energy.
-
Bioethanol: Fueling Sustainable Transportation.
- Davis, M., J. O. Baker, T. Rignall, and M. E. Himmel. 2002. Changes in cellulose morphology of pretreated yellow poplar during enzymatic hydrolysis. NREL Report No. PO-510-32125
- Eriksson, T., J. Karlsson, and F. Tjerneld. 2002. A model explaining declining rate in hydrolysis of lignocellulosic substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reesei. Appl. Biochem. Biotechnol. 101: 41-59 https://doi.org/10.1385/ABAB:101:1:41
- Kang, H. J. and K. Ishikawa. 2007. Analysis of active center in hyperthermophilic cellulase from Pyrococcus horikoshii. J. Microbiol. Biotechnol. 17: 1249-1253
- Kusuma, K., G. H. Chon, J. S. Lee, J. Kongkiattikajorn, K. Ratanakhanokchai, K. L. Kyu, et al. 2006. Hydrolysis of agricultural residues and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. strain BK. J. Microbiol. Biotechnol. 16: 1255-1261
- Li, Z. J., V. Shukla, K. Wenger, A. Fordyce, A. G. Pedersen, and M. Marten. 2002. Estimation of hyphal tensile strength in production-scale Aspergillus oryzae fungal fermentations. Biotechnol. Bioeng. 77: 601-613 https://doi.org/10.1002/bit.10209
- Lubbert, A. and B. S. Jorgensen. 2001. Bioreactor performance: A more scientific approach for practice. J. Biotechnol. 85: 187-212 https://doi.org/10.1016/S0168-1656(00)00366-7
- Lynd, L., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 6: 506-577
- Mansfield, S. D., C. Mooney, and J. N. Saddler. 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15: 804-816 https://doi.org/10.1021/bp9900864
- Oldshue, J. Y. 1983. Fluid Mixing Technology, pp. 1-23. McGraw-Hill, New York
- Philippidis, G. P. and C. Hatzis. 1997. Biochemical engineering analysis of critical process factors in the biomass-to-ethanol technology. Biotechnol. Prog. 13: 222-231 https://doi.org/10.1021/bp970017u
- Rushton, J. H., E. W. Costich, and H. J. Everett. 1950. Power characteristics of mixing impellers. Chem. Eng. Prog. 9: Part I: 395-450, Part II: 467-476
- Shin, D. G., A. Yoo, S. W. Kim, and D. R. Yang. 2006. Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii. J. Microbiol. Biotechnol. 16: 1355-1361
- Um, B. H. 2002. Effect of pretreatment reagent and hydrogen peroxide on enzymatic hydrolysis of oak in percolation process. Appl. Biochem. Biotechnol. 91/93: 81-94
- Um, B. H., M. N. Karim, and L. L. Henk. 2003. Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover. Appl. Biochem. Biotechnol. 105/108: 115-152
- USA Today, June 11, 2006. Debate brews: Has oil production peaked?
- Valjamae, P., V. Sild, G. Pettersson, and G. Johansson. 1998. The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur. J. Biochem. 253: 469-475 https://doi.org/10.1046/j.1432-1327.1998.2530469.x
- Yin, L. and R. J. Chrost. 2006. Enzymatic activities in petroleum wastewater purification system by an activated sludge process. J. Microbiol. Biotechnol. 16: 200-204
- Zhang, Y. H. P. and L. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng. 88: 797-824 https://doi.org/10.1002/bit.20282