DOI QR코드

DOI QR Code

Estimating Consumer Surplus for Recreational Sea Fishing using Individual Travel Cost Method

개별여행비용법을 이용한 바다 유어 낚시의 소비자 잉여추정

  • Pyo, Hee-Dong (Division of Marine Business and Economics Pukyong National University) ;
  • Park, Cheol-Hyung (Division of Economics Pukyong National University) ;
  • Chung, Jin-Ho (Division of Marine Business and Economics Pukyong National University)
  • 표희동 (부경대학교 해양산업경영학부) ;
  • 박철형 (부경대학교 경제학부) ;
  • 정진호 (부경대학교 해양산업경영학부)
  • Published : 2008.06.30

Abstract

This paper aims at estimating consumer surplus for recreational sea fishing in Tongyeong coastal area using individual travel cost method. A Poisson model (PM), a negative binomial model (NBM), a truncated Poisson model (TPM), and a truncated negative binomial model (TNBM) are applied for individual travel cost method in order to account characteristics of count data (non-negative discrete data.) The survey was conducted for 462 inshore anglers using personal interview method in Tongyeong during July and October 2007. Respondents were asked about how often they do fishing, travel costs, catch, income, and so on. Because of over-dispersion problem in PM and TPM, NBM and TNBM were considered to be more appropriate statistically. All parameters estimated are statistically significant and theoretically valid. As the results based on TNBM, consumer surplus per trip was estimated to be 183,486 won, total consumer surplus per person and per year 3,399,658 won, and the marginal effect of consumer surplus on % changes in catch rate is 185,372 won.

Keywords

References

  1. 김도훈. 2005. 여행비용모형 분석을 통한 유어 활동의 경제적 가치 추정. 수산경영논집, 36, 121-134
  2. 박철형. 2005. 유어 낚시인구의 사회경제학적 특성과 출조빈도함수의 추정에 관한 연구. 수산경영논집, 36, 81-101
  3. 소국섭, 이희찬. 2007. 절단된 포아송모형을 활용한 골프수요 영향요인연구. 한국관광학회지 관광학연구, 31, 9-27
  4. 송운강. 2004. 경포 해수욕장의 경제적 가치추정: 가산자료모형을 이용한 개인여행비용분석. 한국관광학회지 관광학연구, 28, 11-26
  5. 송운강, 류환경. 2005. TCM의 여행비용변수에 대한 논의. 관광연구저널, 19, 125-137
  6. 유승훈, 양창영. 2005. 가산자료모형을 이용한 해양오염사고 발생횟수의 분석. 해양정책연구, 20, 33-56
  7. 이희찬. 2004. 주5일 근무제가 관광수요에 미치는 영향: 가산 자료 관광수요모형의 적용. 한국관광학회지 관광학연구, 28, 43-61
  8. 이희찬, 한진영. 2004. 전시관람수요의 결정요인: 절단된 가산자료모형의 적용. 한국관광학회지 관광학연구, 28, 307-326
  9. 한상현, 조광익. 2004. 모형적합도 검정을 통한 여행비용모형 추정에 관한 연구: 역사유산 관광자원을 중심으로. 한국관광학회지 관광학연구, 28, 145-168
  10. 한상현, 조광익. 2006. 산악 국립공원의 비시장가치 추정에 관한 연구: 주왕산 국립공원에 대한 개인별 여행비용모형의 적용. 관광연구, 21, 113-129
  11. 해양경찰청. 2007. 해양경찰백서. 해양경찰청
  12. 허윤정, 이승래. 2007. 가산자료모형을 이용한 송정해수욕장의 경제적 가치추정: 비수기 해수욕장의 가치추정. 수산경영논집, 38, 79-101
  13. Bergstrom, J.C. and H.K. Cordell. 1991. An Analysis of the demand for and value of outdoor recreation in the United States. J. Leis. Res., 23, 67-86
  14. Cameron, A.C. and P.K. Trivedi. 1986. Econometric models based on count data: Comparisons and applications of some estimators and tests. J. Appl. Econom., 1(1), 29-53 https://doi.org/10.1002/jae.3950010104
  15. Cameron, A.C. and P.K. Trivedi. 1998. Regression analysis of count data. Cambridge University Press, Cambridge. 411 p
  16. Creel, M. and J. Loomis. 1993. Theoretical and empirical advantages of truncated count data estimators for analysis of deer hunting in California. Am. J. Agr. Econ., 72(2), 434-441 https://doi.org/10.2307/1242345
  17. Curtis, J.A. 2002. Estimating the demand for salmon angling in Ireland. Econ. Social Review, 33(3), 319-332
  18. Hagerty, D. and K. Moeltner. 2005. Specification of driving costs in models of recreation demand. Land Econ., 81(1), 127-143 https://doi.org/10.3368/le.81.1.127
  19. Hellerstein, D. and R. Mendelsohn. 1993. A theoretical foundation for count data models. Ame. J. Agr. Econ., 75, 604-611 https://doi.org/10.2307/1243567
  20. Loomis, J.B., R. Rosenberger, and R.K. Sjrestha. 1999. Updated estimates of recreation values for the RPAprogram by assessment region and use of meta-analysis for recreation benefit transfer. Colorado State University, Final Report for the USDA Forest Services. 66 p
  21. O'Neil, M.F. and M.J. Faddy. 2003. Use of binary and truncated negative binomial modelling in the analysis of recreational catch data. Fish. Res., 60, 471-477 https://doi.org/10.1016/S0165-7836(02)00101-7
  22. Pradhan, N.C. and P. Leung. 2006. A Poisson and negative binomial regression model of sea turtle interaction in Hawaii's longline fishery. Fish. Res., 78, 309-322 https://doi.org/10.1016/j.fishres.2005.12.013
  23. Shaw, D. 1988. On-site sample's regression: Problems of non-negative integers, truncation, and endogeneous selection. J. Econom., 37(2), 211-223 https://doi.org/10.1016/0304-4076(88)90003-6
  24. Shrestha, R.K., A.F. Seidl, and A.S. Moraes. 2002. Value of recreational fishing in the Brazilian Pantanal: A travel cost analysis using count data models. Ecol. Econ., 42, 289-299 https://doi.org/10.1016/S0921-8009(02)00106-4
  25. Ward, F.A. and D.J. Beal. 2000. Valuing nature with travel cost models: A manual. Edgar Elgar, Cheltenham. 255 p
  26. Ward, F.A. and J.B. Loomis. 1986. The travel cost demand model as an environmental policy assessment tool: A review of literature. J. Agr. Resource Econ., 11(2), 164-178
  27. Yen, S.T. and W.L. Adamowicz. 1993. Statistical properties of welfare measures from count-data models of recreation demand. Rev. Agr. Econ., 15(2), 203-215 https://doi.org/10.2307/1349443

Cited by

  1. Estimating a Total Demand Function for Sea Angling Pursuits vol.134, 2017, https://doi.org/10.1016/j.ecolecon.2016.12.024
  2. Evaluating the Economic Damages to Anglers of the Marine Recreational Charter due to the Herbei Spirit Vessel Oil Spill vol.36, pp.3, 2014, https://doi.org/10.4217/OPR.2014.36.3.289
  3. Estimation of the Willingness to Payment of Sea-anglers about Increase in Abundance of Fish Resources Using CVM vol.38, pp.3, 2016, https://doi.org/10.4217/OPR.2016.38.3.235
  4. Measuring Recreational Benefits of Chilgap Reservoir Using TCM vol.22, pp.3, 2016, https://doi.org/10.7851/ksrp.2016.22.3.097
  5. Assessing the Economic Feasibility of a Marine Ranching Project in Tongyoung vol.31, pp.4, 2009, https://doi.org/10.4217/OPR.2009.31.4.305
  6. Estimating the Economic Value of Recreation Sea Fishing in the Yellow Sea: An Application of Count Data Model vol.23, pp.2, 2014, https://doi.org/10.15266/KREEA.2014.23.2.331
  7. Irish coarse and game anglers’ preferences for fishing site attributes vol.190, 2017, https://doi.org/10.1016/j.fishres.2017.01.016
  8. Environment damage assessment: A literature review using social network analysis vol.24, pp.4, 2018, https://doi.org/10.1080/10807039.2017.1395687