=297 11-1(2008) pp.131~156

Uninorm logic: toward a
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fuzzy-relevance logic(2)
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[Abstract] This paper first investigates several uninorm logics (introduced
by Metcalfe and Montagna in [8]) as fuzzy-relevance logics. We first show
that the uninorm logic UL and its extensions IUL, UML, and IUML are
fuzzy-relevant, fuzzy in Cintula’s sense, ie., the logic L is complete with
respect to linearly ordered L-matrices; and relevant in the weak sense that ¢
—y is a theorem only if either (i) ¢ and y share a sentential variable or
constant, or (ii) both ~® and y are theorems, We next expand these systems
to those with A.
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1. Introduction

Hajek [6] introduced the basic fuzzy logic BL and
showed that the well-known infinite-valued systems L
(Lukasiewicz logic), G (Godel-Dummett logic), and I
(Product logic) are its extensions. BL is the residuated
fuzzy logic capturing the tautologies of continuous t-norms
and their residua. Esteva and Godo [4] introduced the
monoidal t-norm logic MTL, which copes with the logic of
left-continuous t-norms and their residua, as a weakening
of BL (and a strengthening of Affine multiplicative additive
intuitionistic linear logic AMAILL introduced by Hohle {7]).

All the above systems may be called t-norm (based)
logics in the sense that their algebraic counterparts are
based on t-norms. T-norm (based) logics are not relevant.
Because the integral condition (Int) that the greatest
element 1 is the unit element (1 * x = x for all x € [0, 1))
corresponds to (&-E) (¢ & @) — ¢, a common axiom of
all the above (t-norm) logics, from which the weakening
(W) & — (y — ¢) can be proved using the “residuation”
below and vice versa, and (W) (and so (&-E)) allow(s)
irrelevance between ¢ and y in case @ — w is a theorem.

Metcalfe and Montagna [8] recently introduced the
uninorm  logic UL  capturing the tautologies  of
left~continuous conjunctive uninorms and their residua as a
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weakening of MTL and a strengthening of Multiplicative
additive intuitionistic linear logic MAILL, and its schematic
extensions IUL, UML, IUML. They investigated them as
substructural  fuzzy logics. The present author [10]
investigated the system R of Relevance with “mingle” RM
and its weakening wRM as fuzzy-relevance logics; fuzzy in
the sense that it satisfies the fuzzy condition (of a logic) of
Cintula in [2] that it is a weakly implicative logic which is
complete with respect to (wur.t.) linearly ordered RM or
wRM-matrices (or RM or wRM-algebras); and relevant in
the weak sense that it satisfies the weak relevance principle
(WRP) in [3] that & — w is a theorem only if either (i) ¢
and y share a sentential variable or (i) both ~¢ and y are
theorems,

Concerning these two facts, one interesting point to state
is that while algebraic counterpart of (w)RM rejects (Int),
it instead accepts all of the conditions of a uninorm, more
exactly, the conditions of an isotonic commutative monoid
below. Then, the above uninorm logics seem to be
fuzzy-relevant in the above senses as well. This paper
investigates the above uninorm logics as fuzzy-relevance
logics (see [10] for the motivation for fuzzy-relevance
logics).) More exactly, we shall show that they are all

1) Roughly speaking, our motivation for fuzzy-relevance logic is this: 1)
we argue in natural language, which is "vague” rather than "exact”,
ie., we in fact treat propositions in vagueness, and 2) in argument
conclusion is relevant to premise(s), i.e, we do not argue something
from irrelevant premise(s). Fuzzy-relevance logic is a logic to



134 EUNSUK YANG

fuzzy in Cintula’s sense and relevant in the weak sense
that & — w is a theorem only if either (i) ¢ and y share a
sentential variable or constant, or (ii) both ~¢ and w are
theorems (calling this “weak relevance principle”™ (WRP’)).
Note that even if Metcalfe and Montagna [8] called the
uninorm logics fuzzy ones, they did not exactly show that
in which or whose sense they are fuzzy. We first give
algebraic completeness results for them, and next show that
they are both fuzzy and relevant in the above senses. We
furthermore expand the above propositional systems to those
with A,

For convenience, we shall adopt the notation and
terminology similar to those in [2], [4], [5), and [6], and
assume being familiar with them (together with results
found in them).

2. Syntax

We base uninorm logics on a countable propositional
language with formulas FOR built inductively as usual from
a set of propositional variables VAR, binary connectives -,
& A, V, and constants F, f, t. Further definable
connectives are:

dfl. ~¢ = ¢ —> f, and

consider both 1) and 2).
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dR2. ¢ =y = (p — w A (g — @)

We moreover define T as ~F, and ¢ as & A t. For
the remainder we shall follow the customary notation and
terminology. We use the axiom systems to provide a
consequence relation.

We start with the following axiom schemes and rules for
UL.

Definition 2.1 UL consists of the following axiom
schemes and rules:?

Al ¢ — ¢ (self-implication, SI)
A2. (0 AN y) — 9, (& A y) — 3y (A-elimination, A-E)
A3 (o) A (X)) — (p—{wAX)) (A-introduction, A~D)
AL d—>{(d V), vw— (@ Vg (V-introduction, V-I)
AL, ({(o—=>x)A(y—>x) — (§Vy)—=X) (V-elimination, V-E)
AB. AV @AYVIOAYY (A V-distributivity, A
v-D)

A7. F — ¢ (ex falso quadiibet, EF)
AB (9 & ) — (y & ¢) (&-commutativity, &-C)
A9. (@ & t) «» ¢ (push and pop, PP)
ALl (g — x) — ({0 — g) — (¢ — x)) (prefixing, PF)
All (d — gy = X)) « (¢ & w) — x) (residuation, RE)
Al2. (@ — wh V (¢ — ¢} (t-prelinearity, PLy).

d — v, & + y (modus ponens, mp)

b, ¢y = & A w (adjunction, adj)

Definition 2.2 (ULs) A logic is a schematic extension of
L if and only if (ff) it results from L by adding axiom
schemes. L is a UL iff L is a schematic extension of UL.

20 The axiomatization of UL is slightly different from that of UL in [8].
But we can easily show that they are eguivalent.
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In particular:

e JUL is UL plus ~~¢ — ¢ (double negation elimination,
DNE)

e UML is UL plus (¢ & ¢) < ¢ (idempotence, ID)

s JUML is IUL plus (ID) and t < f (fixed-point, FP)

A theory over L is a set T of formulas. A proof in a
sequence of formulas whose each member is either an
axiom of L or a member of T or follows from some
preceding members of the sequence using the rules (mp)
and (adj). T + ¢, more exactly T Fp ¢, means that ¢ is
provable in T wurt. L, ie, there is an L-proof of ¢ in T.
The relevant deduction theorem (RDT) for L is as follows:

Proposition 2.3 Let L be a UL, T a theory, and ¢, v
formulas. T, & FL w iff T b+ ¢ — w.

Proof: It is just Enthymematic Deduction Theorem (see

[9h. O

A theory T is inconsistent if T + F,; otherwise it is
consistent.

For easy reference we group the uninorm logics defined
in this section together as a set.

Definition 2.4 Logics = {UL, IUL, UML, ITUML}

”

For convenience, “~", “A”, “V” and “-” are used
ambiguously as propositional connectives and as algebraic
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operators, but context should make their meaning clear.

3. Semantics

Suitable algebraic structures for ULs are obtained as
varieties of residuated lattices.

Definition 3.1 A bounded commutative monoidal
residuated lattice (bcmr-lattice) is a structure A = (A, T,
L, T, Lg A, V, % —) such that:

M (A, T, L, A, V)is a bounded distributive lattice with
top element T and bottom element L.

(ID (A, *, Ty satisfies for all x, y, z € A,

(@ x *y =y *x (commutativity)

() Ty * x = x (identity)

{c}) x < yimplies x * z < y * z (isotonicity)

(dx*(y*2) =(x=*y)*z (associativity)

) y < x-oz f x¢y < 2z for al x, v, z € A
(residuation)

(A, =, Ty) satisfying (II-b, d) is a monoid. Thus (A, *,
Ty satisfying (II-a, b, ¢, d) is an isotonic commutative
monoid. (A, *, Ty) satisfying (II-a, b, ¢, d) on [0, 1] is a
uninorm and it is a t-norm in case T¢ = T.

To define a bemr-lattice we may take in place of (II-¢)

(V) x * {y V z) = (x *y) V (x # 2).

Using — and 1t we can define Ty as L1y — L¢ and ~
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as in (dfl). In a bcmr-lattice, ~ is a weak negation in the

sense that for all x, x < ~~x holds in it.

Definition 3.2 (UL-algebra) A UL-algebra is a

bemr-lattice satisfying the condition: for all x, v,
pl) Ty € X =y} V (y = xh.

An IUL-algebra is a UL algebra with strong negation,
ie, for all x, x = ~~x; a UML-algebra is a UL algebra
satisfying (II-e) x * x = X (idempotence) for all x; and an
IUML-algebra is a UML algebra having strong negation
and (FP) T, = Ll '

An algebra A is linearly ordered if the ordering of its
algebra is linear, i.e, x < vy or y < x (equivalently, x Ay
=xorXx Ay =y) for each pair x, y.

Definition 3.3 (Evaluation) Let A be an algebra. An
A-evaluation 1s a function v : FOR — A satisfying:

v#(Dy, o, Om)) = #Av(OD), o, (D),

where # € {& —, A, V, t, f, T, F}, #a € {x, =, A,
V, Ty, Ly T, L}, and m is the arity of # and #a.

Definition 3.4 Let [ be a propositional language, L a
logic in L, T a theory in L, ® a formula, and K a class of
A-algebras.

(i) (Tautology) ¢ is a Tetautology in A, briefly an
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A-tautology (or A-valid), if v(¢) > T, for each
A-evaluation v,

(i) (Model) An A-evaluation v is an A-model of T if v($)
> Ty for each & € T. By Mod(T, A), we denote the
clags of A-models of T.

(ith) (Semantic consequence) ¢ is a semantic consequence of
T wrt K, denoting by T Ex ¢, if Mod(T, A) =
Mod(T U {®}, A) for each A € K

Definition 3.5 (L-algebra) Let L be a logic in [, T a
theory in [, ¢ a formula, and A an algebra. A is an
L-algebra iff whenever ¢ is L-provable in T, ie, T v 9,
it is a semantic consequence of T wurt. the set of A. By
MOD"Y(L), we denote the class of (linearly ordered)
L-algebras. We write T =0 o in place of T !:MOD(DL b.

Proposition 3.6 The class of all UL-algebras is a
variety of algebras.

Proof: To prove that the class of all UL-algebras is a
variety, we note first that the class of (bounded)
distributive lattices is a variety and each of the conditions
of (II-a, b, d) has a form of equation. Note also that in
each UL-algebra the equations for (II-¢) and (II) can be
given; for the equations for (II-¢) and (II), see (IV) and
Lemma 2.3.10 in [6]. Analogously the equations for (ply) can
be given. Thus, since each condition for a UL-algebra has
a form of equation or can be defined in equation, it can be
ensured that the class of all UL-algebras is a variety. [J
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Let A be an algebra. Ay—matrix, briefly M-matrix, is an
A-algebra with D, a subset of A. The elements of D are
usually called designated elements of matrix M. Then, in an
analogy to the above, we can define a UL-matrix.
Furthermore, by taking v(¢) € D in place of v(¢) > Ty,
we can analogously define tautology, model, semantic
consequence, and L-matrix on M-matrices in place of
A-algebras.

Let us take D = {xX x = v(d) = T¢. Then it is
immediate that

Corollary 3.7 A UL-algebra A is an L-algebra iff T +
L ¢ implies T Fr ¢ iff a UL-matrix M = (A, D) is an
L-matrix.

4. Algebraic completeness

Let L be a UL, and A a (corresponding) UL-algebra.
We first note that the nomenclature of the prelinearity
condition is explained by the following subdirect
representation theorem.

Proposition 4.1 Each UL-algebra is a subdirect product
of linearly ordered Ul -algebras.

Proof: Its proof is as usual. []
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We next show that classes of provably equivalent
formulas form an L-algebra. Let T be a fixed theory over
L. For each formula ¢, let [dlr be the set of all formulas v
such that T Fi & < y (formulas T-provably equivalent to
®). Ar is the set of all the classes [¢]r. We define that
[dlr = [wlr = [0 — wlr, [¢]r * [vlr = [0 & v, [0l A
wlr = [0 A wlr, [0 V [ylr = [0 V wlr, L = [Fly, T =
[Tly, Ty = [tl, and L1¢ = [fl;. By A7, we denote this
algebra.

Proposition 4.2 For T a theory over L, At is an
L-algebra.

Proof: Note that A2 to A6 ensure that A, V, and —
satisfy (I) in Definition 3.1; that A8, A9, and the theorems
(AS) (0 & (g & X)) <« (¢ & ) & X) and (IT) (d — )
— (¢ & x) — (g & X)) ensure that & satisfies (II) (a) -
(d); that All ensures that (III) holds; and that Al2 ensures
that (pl) holds. It is obvious that [¢dlr < [wlr iff T i ¢
< (® A v iff T 1 & — w. Finally recall that At is an
L-algebra iff T Fy v implies T kL w, and observe that
for d in T, since T L t — ¢, it follows that [tlr < [}l
Thus it is an L-algebra. []

Theorem 4.3 (Strong completeness) Let L be a UL, T a
theory, and ¢ a formula. T Fi ¢ iff T kv ¢ iff T EYL ¢.
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Proof: ) T +y ¢ iff T Er ¢. Left to right follows
from definition. Right to left is as follows: from Proposition
42, we obtain At € MOD(L), and for Ar-evaluation v
defined as v(y) = [wlr, it holds that v € Mod(T, Ar).
Thus, since from T Er ¢ we obtain that [¢lr = v(dp) > T
t, T FLt — &. Then, since T v t, by (mp) T ki §, as
required.

i) T k¢ ¢ iff T =% ¢. It follows from Proposition 4.1.
O

Corollary 4.4 (Weak completeness) For each formula ¢,
d is a theorem iff for each (linearly ordered) L-algebra A,
¢ is an A-tautology, ie., Fp & iff =0 ¢.

5. Fuzzy-relevance

5.1, Fuzziness

Following Cintula [2], let a UL L be fuzzy in case it is
complete wrt linearly ordered L-matrices, ie, L = Bl
We show that a logic L is so in case it is a UL, ie, an L
having Al2. We first show that all the ULs above are
weakly implicative logics.

Proposition 5.1 A UL L is a weakly implicative logic.

Proof: We first note that a weakly implicative logic



Uninorm logic: toward a fuzzy-relevance logic(2) 143

(WIL) is a logic having (SD), (mp), transitivity (¢ — w, ¢
- X F & — x), and congruence w.r.t. connectives. Since L
has Al, (mp), and proves (SF) (6 — v) — (g — x) — (D
— X)), it suffices to check that <> is a congruence w.rt. A,
Vv, &, and —' we check one direction. Let + ¢ — w. Writ.
A, by A2 and transitivity, (¢ A x) — w, and thus (d A
x) — (g A x) by A2, A3, (adj), and (mp); wrt. V,
analogously to A; wrt & (0 & ¥) — (y & x) and (x &
d) — (x & y) by (IT) and AY; wrt —, (w = x) = (¢ —
X) and (x = ¢) — (x — @) by (SF) and Al0. []

To show that L is fuzzy, following [2] we add more
definitions on a theory T to the definitions above.

Definition 5.1 Let L be a UL.

() T is linear if T is consistent and for each pair ¢, w of
formulas, T - ¢ »ywor T F y — &,

(ii) T is prime if for each pair ¢, v of formulas such that
TrFOV Yy, THOorTF oy

(iii) L has the Linear Extension Property (LEP) if for each
theory T and formula ¢ such that T ¥ ¢, there is a
linear theory T  such that T € T  and T ¥ ¢.

(iv) L has the Prelinearity Property (PP) if for each theory
T, we get T + x whenever T, ¢ — ¢ + x and T, w
- ¢ F X

(v) L has the Subdirect Decomposition Property (SDP) if
each ordered L-matrix is a subdirect product of linearly
ordered L-matrices.

(vi) L has the Prime Extension Property (PEP) if for each
theory T and formula ¢ such that T ¥ ¢, there is a
prime theory T  such that T & T  and T ¥ ¢.

(vii) L has the Proof by Cases Property (PCP) if for each
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theory T, we get T, & V v & x whenever T, & + X
and T, v + x.

We consider L as a finitary logic in the sense that for
each theory T and formula ¢ we have that if T +~ ¢ there
is a finite theory T° < T such that T + ¢. Then,
since a UL L is a WIL, by Lemma 17 in [2], we can obtain
that

Proposition 5.2 Let L be a UL and T a theory.

{i) T is linear iff the L-matrix Mt is linearly ordered;
(ii) T is linear iff T is prime;
(iii) L has PP iff L has PCP and (PL), i.e., (d—w)V (g—).

Note that Cintula showed that as a finitary WIL L is
fuzzy iff L has LEP iff L has PP iff L has SDP iff L has
PCP and (PL) (see Theorem 3 and Lemma 17 in [2]). Since
a finitary UL L is a finitary WIL proving (PL), it is
immediate that

Corollary 5.3 For a finitary UL L,
L is fuzzy iff L has PCP iff L has PEP.

Let us consider L with deduction theorem. In an analogy
to Lemma 22 in [2], we can show that

Proposition 54 Let L be a finitary logic with RDT.
Then L is a fuzzy logic iff it holds: Fi (® — w), V (y —
b, 1e, Al2.
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Proof: Left to right is obvious. For right to left, we just
show that L has PP. Let T, ¢ > v +r x and T, v — ¢
Fo X. By RDT, T FL (@ = w) > x and T k1 (w — ¢
— X. Then by A5 (together with (adj) and (mp)), T Fi
(@ = ¢} V (w = O)) — x. Thus, by Al2 and (mp), T
kL X, as desired. [

Then using Proposition 5.4 (and soundness as usual), we
can easily show that

Theorem 5.5 (Completeness) Let T be a theory over a
finitary UL L and ¢ a formula. Then T i ¢ iff T E'L o.

5.2. Relevance

In this subsection we show that a UL L is relevant in

the weak sense above, ie., in the sense that it satisfies
WRP”.

Proposition 5.6 Let L be a UL. Then L is relevant in
the sense that it satisfies WRP”,

Proof: For this, it suffices to note that IUML is the
RM just having (FP) and that UL, IUL, and UML are
weakenings of RM. Since RM is relevant in the sense that
it satisfies WRP and so WRP’, it is immediate. []

Then, from Propositions 54 and 56, it directly follows
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that

Proposition 5.7 Let L be a UL. Then, L is a

fuzzy-relevance logic.

Proposition 5.8 Let L be a UML. It proves: ~{(¢ — )
= (g — y).

Proof: We first note that t — (& — ¢) and f — t are
theorems of L. Then, since ~(& — &) — f by
contraposition and mp, ~(¢ - ¢) — t by transitivity.
Then, since t — (d — ¢), ~(@ — ) — (¥ — y) by
transitivity. [

Note that the strong relevance principle (SRP) in [1] is
that & — v is a theorem only if  and w share a sentential
variable. Thus, from Proposition 5.5. it directly follows that

Corollary 5.9 A UML L is not strongly relevant.

Remark 5.10 Let L be a UL having either (f) f — t or
(FP) or & — (& — &) (mingle). L proves such formulas as
~b VvV ~¢) = (g V ~y) and ~(d = ¢) — (g — ),
and so it is not relevant in the strong sense any more.
(But, since these formulas still satisfy WRP’, L may be
instead relevant in the weak sense.) Note that RM is the R

with (mingle) and that while RM is weakly relevant, R is
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strongly relevant in the above senses. Then, since UL and
IUL do not prove any of (f), (PF) and (mingle), they seem
to be strongly relevant. But UL and IUL have AlZ, ie,
(PLy) and so they are not weakenings of R, which is
strongly relevant. We conjecture that they are strongly

relevant. It is an open problem remained in this paper.

6. The connective A

We here consider a UL L expanded with the unary

connective A, For this we expand the language of L with
A,

Definition 6.1 Let L be a UL, and Ad; be (Ad), ie,
AD At

(1) (ULA+s) LAar is L with the following axiom schemes
and rule:
AArl Ade V (Ad — F)
AL2. A0 = (T — AQ)
AA3Z. A(dVy) — (AdV Ay) (A V-distribution, A V-D)
Ard (Ad A Ay) — AP N y) (AN-D)
Aab Ady — ¢ (Ap-reflexivity, ARF)
ALB ALY < A
AAT & (d—y) = (Ad—Ayw) (A-monotonicity, AMN)
AAB (20 & 29} — (A4 & 20) (AA&DY)
AA9 Ap — (Ad & &) (A&-INC)
AAT0. Al & ¢) — 4d (A&-DEC)
AAll, ~~(Ad) — 4 (ADNE)
AAW. A — (g — ¢) (AWY)
¢ ~ Ad (necessitation, nec)
(ii) (ULAs) Loy is L with Aal, AA3, AAad, AAT, AASG,
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AA9 AAW,, (nec) in (i) and:
AL Ay — (0 — 20)
ALY, Ad — ¢ (A-reflexivity, ARF)
AAB. Ap — A AP (A-transitivity, ATRS)
AN, A (D & )y — AP (A&-DECY)
Anll’. ~~(Aad) — Ad (ADNEY
(ii) (ULA+s) LAty is L with AAl, AA3, AAd4, AAL, AA
6, Ar7, AA9, Ar10, AAll, (nec) in (1) and (i), and:
An2”. Ap — ¢t
AaWa, &d — (yy — ¢) (AWa).

For brevity, by a UL 4, we ambiguously express ULA 1,
ULAy, and ULA+¢ all together if we do not need
distinguish them; and by LA, LA+, LAy, and LA+, We
can first easily show that

Proposition 6.2 (i) LA proves:
(1) (60 > F) = () <« F)
@) (T — 2d) > (A« T)
B (20 & 2y) = A(D & v)
@) 2 (P& < Ady & (AQ&AD) < (20&AD): (A&-IDY)
(5) Aq)nt «> A((l)"t)t, i.e., ((A(D)t)" «> ((A(Pt)n)t, for each n
6) Ad — (v — Xk < 20 & ) = Xk
(N &0 = yh = Ay~ ) = (@ — X))
@8 Aly = ) = A0 = ¢) = ( — X))
9 (20 & (w & X)) « (24 & ) & X) (AAS:a)
(10) (2 & ¥) & X) « ((Ade & X) & y) (AASD)
A1) (ad: — 2y — (Aygy = X)) = (Ad — X)) (ASFia)
(12) A — ) — ((y = Ax) — (@ — Axy) (ASFb)
(13) (Ayy — Axy — (@ — Ay — (§ — Axy)) (APFa)
(14) (g = x) = (2 — ) = (A — X)) (APFb)
(15) (a¢y — (A — y)) = (Ady — w) (ACY)
(16) (Ade — (g — X)) < ((Ad & w) — X) (AREY
A7 (ad — (g — x) « (g = (Ad — X)) (APMY)
(18) A(d — ¢ vV Ay — )%, for each n (APL%)
(19) a(d = ) V Ay — ¢) (APLY
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(20) 2(p — w) V 2oy — ¢) (APL)

(i) LA+ proves:
(DT & At
(2) & (d) < 20
(3) A¢ — (20 < T)
4) 2« (bd & 4¢) © AD & ¢) (A&-ID)
(5) ~~(Ld) < Ap (ADN)
(i) LA proves:
(1) A" <« 2007, 1e, (AD)Y" < A(d)", for each n
(2) 29 — (20 — @)
(iv) LA proves:
(D ad < 2
Q2) 2y = (Ap 1)
3) A0 & D) & 2D« (£ & 2D) (£&1ID)
4) ~~nd < 2d (ADN)
(B) A = (g = X)) < &0 & y) > )
6 20— y) — Ay — x)— (©— x)
(N Ay = x) = A0 — 9) — (& — X))
@8 (20 & (¥ & X)) <« (A0 & p) & x) (AASa)
Q) (Ad & y) & X))« ((Ad & X) & w) (AASD)
(10) (2¢ — Ay) — (ay — x) = (Ad — x)) (ASFa)
(11) & — w) — (g — &%) = (@ — 2&x)) (ASFb)
(12) (ay — ax) = (& = Ay) — (6 — 4x)) (APFa)
(13) (y = x) = (a4 — y) = (& — X)) (APFD)
(14) (A — (Ad — ) — (20 — v) (ACa)
(15) A(adp — (AD — ) — (AP — y) (ACh)
(16) 29 — (Lry — ¢) (AWD)
A7 (ad — (g — x) « (A & y) — x) (ARE)
(18) (29 = (g = X)) < (¢ = (AP — x)) (APMa)
(19) a(adp = (Aay = X)) = (Ay — (A9 — x)) (APMD)

Proof: We prove (i-9) as an example. We prove right to
left:

L Ady — (g & X)) — (Ady & (g & x))) (Al re)
2. A(ad) = Ag&X) — (20&(y&x)) (1, AAT, mp)
3. A0 — (ALd A at) (AAB()), A2, A3, adj, mp, trans.)
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AP = Ap&x) — (A& w&X))) (2, 3, AA4, trans.)

L AG — A(g&x) — (Aad & (¢ & X)) (4, A3, adj, mp)

. Ay = Ay = (X > (80&p&x)N)e 6, (i-6), trans.)

Ap—(y — (X — (A 0&(p&x))) (6, AAB("), A2, trans.)
8 (L0 & w) & x) — (& & (w & X)) (7, re)

Proof of left to right is analogous.

~N Ul

Proof of the rest is left to the interested reader. [

Proposition 6.3 (RDTA) Let LA be a finitary ULA
logic, T a theory over LA, and ¢, v formulas. Then, T U
{0} Froa v if T Fra &0 — .

Proof: Right to left is easy. For left to right, we just
check the rule (mp) as example. By IH, we first assume
that for some j, k <1, T Frs Ady — yjand T bra Ady
— Yy, where wy = y; — i, and show that T Fpa Ad —
y;. By the second assumption and (pm) ¢ — (¢ — x) ) Fr
» ¢ — (@ — x) (as a derived rule in L and so in L&), T
Fra w; — (AQr — ). So, by the first assumption and
transitivity, T Frsa A — (Ady — wi). Then, using AC;
and (mp), we can obtain that T Fp. A¢: — wy; as desired.

O

Since LA¢ proves Proposition 6.2 (iv-1), it has Delta
Deduction Theorem (DT A) as well.

Corollary 6.4 (DTA) T U {¢} Frat wiff T Frat A0
— .
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But since LA+ and LAy both do not prove (iv-1), they
do not have DT A.

Definition 6.5 (i) (UL A +-algebras) A UL A r-algebra is
a UL-algebra expanded by a unary operation A satisfying:
for all x, y, z, there is n such that

Al Ty < (Axry V (Ax — 1))

A2, AX < (T — Ax)

A3 A(x V y) £ (Ax V Ay)

N4 (A AN Ay) < Alx A y)

AD AXTE < X

AB, AX = AAX

AT (Ax * Alx — y)) € Ay

A8 (Ax x AX)Tt < (AXTt * AXTH)

A9, Ax < (AX * AX)

A10. AX * X) £ AX

A1l ~~(Ax) € AX

AWKTt AxTt < (yTt — x)

AT, T = ATHL

(i) (ULAx-algebras) A ULA-algebra is a UL-algebra
expanded by a unary operation A satisfying:

Al, A3, A4 AT, A8 A9 AWk in (i), and for all x,

A2 AXye £ (X ™ AX)

A Ax < X

AB. AX < AAX

A0 Alx * x)TL < AX
A1l ~~(AXTt) < AX
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At Tt = ATH,

(iii) (UL A r¢-algebras) A UL A +¢-algebra is a UL-algebra
expanded by a unary operation A satisfying: Al, A3, A4,
AL, A6, AT, A9, A10, A11, At in (1) and (i), and for
all x, v, z,

A2 AX < Ty

AWk, Ax < (yrt = X).

Note that w.rt. ULA-algebras, using AT, we can
prove that (Nec.) Ty < x only if Ty < AX, and vice
versa; and that w.or.t. ULA~ and UL A +i-algebras, using A
t, we can prove (Nec.) and vice versa.®

For simplicity, by a ULA-algebra, we ambiguously
express ULA+-, ULAy-, and ULA r¢-algebras all together
if we do not need distinguish them; and by an L A-algebra,
La+-, LAy, and LAcialgebras. LA-algebra is here
defined as L-algebra in Definition 3.5.

Note that since the class of L-algebras forms a variety
(see Proposition 3.6) and each condition for & operation has
a form of equation or can be defined in equation, the class
of all L A-algebras forms a variety of algebras.

As in section 4.1, we can provide algebraic completeness
for ULA. The notion of evaluations and tautology easily

3 As an example we prove (Nec.) using At let Ty < x. Then, Ty A
X = Tt Furthermore, ATy < x by At and so ATy A x = ATy
By At and A4 (and its converse), Ty = & Ty = A(T¢ A X) = ATy
A Ax. Hence, ATy < Ax, and so by At, Ty < AX, as desired..
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generalize to ULA and algebras. We just note that in case
LA is a ULA, the truth function for A (denoted by (4))
can be given as follows:

(A7) Ax = T if Ty < x,
L otherwise,

(Ay) AX = X if Ty < x,
L otherwise.
(At AX = Ty if Ty < x,
L otherwise.

(A7) is for LA+, (Ay) for LAy, and (A1) for LAty A
A1, Proposition 6.2 (i-1), and (ii-3) hold in Lo+, AA],
(i-1), and (iii-2) in LA and AA1, (i-1), and (iv-2) in LA
+t (see Proposition 6.2). Thus we can ensure that in linearly
ordered L A-algebras, (4A) holds4  Moreover, the
decomposition of any LA:algebra as a subdirect product of

(linearly) ordered ones holds. Then, using this we can give

4 More exactly, (A1) can be proved as follows: by Al, Ty < max{A
X1, AX — L}, Let Ty < Ax+ Then, since Ax+¢ < AX, by A2,
T < (T — Ax). This implies that &4x = T. Furthermore, since A
x A Ty = Tg by &b, Axty £ X, 1e, Tty < x. Otherwise, ie, if x
< Ty AXte € x < Ty by Ab, Then, since Axe < Ty, Ty < (AX
— 1), This implies that Ax < 1, ie, Ax = 1L, as wished.

(Ag): by A1, Ty < max{Axr, Ax — L1} Let Ty < Axt. This
implies that T¢ < Ax. Then, by A5, Ty € Ax <x and so T <
x. Furthermore, by 427, Ax = x. Otherwise, ie, if x < Ty, Ax <
x < T¢ by A5 Then, since Ax < T; and so Axye < Ty, T¢ <
(Ax — 1). Thus Ax = L, as desired.

(A ¢): its proof is almost the same as (Ay).}
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algebraic completeness of L A.

Now, as in section 5.1, we show that a ULA is fuzzy
in Cintula’s sense. For this we first regard ULA- and LA
-algebras as ULA- and LA-matrices as in 51 We
moreover consider LA as a finitary logic in the above
sense. Notice that Cintula showed that LA (as a finitary
WIL with DTA) is a fuzzy logic iff it holds (APL) (see
Corollary 11 in [2]). In an analogy to it, we can show that

Proposition 6.6 Let LA be a finitary ULA logic with
RDTA. Then LA is a fuzzy logic iff it holds (APLy), ie,
Fra &(0 — w) V A(y — ).

Proof: Left to right is obvious. For right to left, we
show that LA has PP. Let T, ¢ > v F xand T, y — ¢
F x. By RDTA, T bra 2@ = y)y @ x and T Fra A
(g — ®) — X. Then by A5 (together with (adj) and (mp)),
T Fra (A = w) V Ay — &)) — x. Thus, by (APLy)
and (mp), T + x, as desired. []
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