Leveraging Open Source Software in Consumer Electronics

Sony § Tim Bird

1. Introduction

Software is becoming an increasingly important part
of consumer electronics products, Where in 1988 a
television set commonly contained only about 8 Kilo—
bytes of ROM, nowadays (2008) it is possible to find
high—end television sets with 64 Megabytes of flash,
This represents an 8000—fold increase in the storage
space for software, over a time span of about 20 years,
A substantial portion of this storage is used to hold
actual code - including the operating system, drivers,
libraries, middleware and applications which operate
the television hardware and provide advanced features
and user interfaces. Products in other categories, such
as mobile phones, digital set—top boxes, personal digi—
tal assistants, audio players, and cameras have seen
similar software size increases,

As the amount of software in a product grows, and
as the amount of time desired to ship a product shrinks,
it becomes more important to utilize existing software
to reduce development costs, However, as products prov—
ide more and more features to satisfy customer ex-—
pectations, the complexity of the required software
grows, The consumer electronics market long ago reached
the point where it is not feasible for an in—house
development team to write all of the software, from
scratch, for a modern CE product,

Almost every major consumer electronics company
now ships at least some products containing the Linux
operating system, Some companies have adopted Linux
for many of their products, Besides the Linux kernel,
several other pieces of open source software are often
utilized as well, ranging from the GNU C library and
the busybox utility suite, to graphics middleware and
vertical application stacks, The primary reasons cited

by companies for choosing open source software,

60 § 2008.7. AX 73R A26R A7E

versus external proprietary software, are 1) to retain
control over the software used and 2) to reduce develop—

ment costs,

2. Software development costs

There are several factors which affect the cost of
software in a product, Obviously, the cost to create the
software in the first place is a key expense, The
desire to reduce this expense is the primary motivator
to use existing open source software,

However, several other software—related costs are
also important, In the short—term (a single product
development cycle), a company also has to:

1) customize existing software,

2) integrate software from different sources, and

3) test and debug the software

In the longer term, a company also has to maintain
the software they use, This consists of debugging,
fixing and testing the software for product support, It
also includes, over time, working on the software for
subsequent products releases,

The central tenet of this paper is that how a com—
pany chooses to interact with the open source com—
munity has a large impact on all of these costs, espe—
cially over the long term,

Before moving on, it should be noted that open
source is not the only source of pre—existing software
for products, Most consumer products which include
Linux also include software from a variety of other
sources, including custom-Dbuilt proprietary software
from in—house developers or contractors, off—the—
shelf components from 3 party software vendors, and
drivers and software libraries from hardware makers,
Re—use issues for these non—open—source components

is outside the scope of this paper. However, it should

be noted that the variety of these sources adds to
the complexity and integration costs for a product,

Let’s discuss the above—mentioned development costs
in turn:

Two key factors in using any external software
(including open source) are the cost to customize the
software for use with the chosen hardware for a pro—
duct, and to integrate different software components
together for the final product, The amount of custom-—
ization required for a product depends both on the
hardware being used (for example, whether it is similar
to existing, supported hardware) and on the require—
ments of the software,

Open source software has a spectrum of maturity
levels, The Linux kernel, C library, and standard Linux
utilities (e.g. Busybox) are quite mature at their core,
However, there is always work to be done to support
new hardware (for example, with drivers and board
support packages), Also, work is ongoing in the Linux
kernel to support changes in product requirements
and specifications, For example, one issue actively being
worked on in the Linux kernel is the scalability of
flash filesystems, As flash memory sizes increase, dif—
ferent file system and memory management algorithms
are needed to make most efficient use of these parts,
to provide good boot—time and run—time performance,
A few new flash file systems for Linux are under de—
velopment at this time[1].

As the body of Linux software grows, it becomes
easier and easier to find examples of similar drivers
and board support packages which can be re—used for
your embedded needs, This is the “network effect”
(using a term from economics) which drives open
source software’s success, That is, the more people
who are using and developing a particular piece of
open source software (like the kernel), the more
utility it has to all of it's users,

Another large development expense is the cost of
integration, which is the cost of putting different soft—
ware pieces together, As the number of different sources
of software increases, the cost of integration also
increases, With open source software, companies that
use components that have already been used together

benefit from testing and debugging of those prior
uses,

Both customization and integration expenses are
related to the ratio of newly created software to
already—existing software in a product, In general
as the amount of software required for a product in—
creases, there is a natural incentive to replace all non—
differentiating software with code that is externally
created, available for little to no expense, and which
has been previously integrated within itself,

That is, it is desirable to use open source as com-—
modity code, so that a company can focus as many
resources as possible on the differentiating features
{and software) in their products.

It is interesting to note that for some components,
once a piece of open source software reaches a par—
ticular maturity and feature level, it is basically sense—
less to not use it, For some product categories, the
Linux kernel hag already reached this state, Since
its acquisition cost is zero (assuming one obtains it
from kernel org), the cost of using the Linux kernel
for a project consists of ONLY the other three costs
{customization, integration and testing), Once the de—
cision to use Linux is made, reducing the cost for
these activities becomes an important goal,

Eventually, as other open source components become
mature and featureful, they will also be adopted into
products, Thus, the amount of open source software
in Consumer Electronics products will inevitably grow,
and the importance of efficiently leveraging open
source will grow as well,

Finally, another large expense in product develop—
ment is testing and debugging, Any changes made to
existing software have to be tested, and checked for
correct functionality, This means that for larger amounts
of customization, more testing is required, At its
core, Linux is extremely well—tested, since it is used
across a wide spectrum of hardware and usage sce—
narios (ranging from very small devices, to desktops,
to servers and supercomputers), This broad range of
use and huge number of developers means that Linux
receives very thorough testing, However, CE products
often have unique hardware and new features, In these
areas, the Linux kernel is less well~tested, But the
amount of testing available on similar hardware, and
for similar features, that is performed by outside develo—

pers is still a valuable benefit of using open source,

Leveraging Open Source Software in Consumer Electronics § 61

Using open source incurs costs similar to other
software in terms of customization, integration and
testing, However, it adds additional obligations for
license compliance, Why, then, do companies use it
over software from other external sources? The
simple answer is that Linux software is growing in
value based on the efforts of thousands of
developers, The value of re—using such a large body
of software outweighs these other costs,

Linux is now a very commonly used operating system
in embedded devices, It will be used more and more
in the future, The question then becomes, what is the
best strategy for leveraging open source software, How
can the above—mentioned costs be reduced? In general,
the answer is “by participating in the open source
process”. This consists of working with the other
developers in the open source community to actively
push your changes back to the projects of origin,
This adds an additional expense to using open source

software, but one which pays off in the long run,

3. Publishing vs. mainlining

Most open source software is provided under a
license which requires that the entity which distri~
butes it also publishes any enhancements that they
have created, The most commonly encountered license
is the GNU General Public License, but there are other
open source licenses as well[2], Legally, a company
may not distribute such software in their products
unless they abide by the license and publish any de~
rivative works that they have made, Compliance with
this obligation is now common throughout the industry,
and needs no additional discussion here,

However, there is a difference between merely
publishing one’s derivative works, and actively working
to incorporate one’s enhancements into the original
body of software, This latter activity is called “main—
lining”, Mainlining encompasses a number of different
activities, ranging from describing required features,
to submitting bug reports and code to upstream pro-—
jects, to justification and promotion of new implemen—
tations,

The notion of mainlining one’s derivative works to

a code base is a relatively new one, and may be

62 § 20087, A BB EE x| A2l ATE

surprising to some established businesses, Traditionally,
developers using software from an external source
have had limited means to incorporate their changes
into the original software base, In the case of soft—
ware obtained from proprietary vendors, a developér
could request feature enhancements, but it was not
common for them to actually deliver their own code,
developed in—house, to the 3™ party vendor., In the
case of open source this is not only allowed, it is
strongly encouraged, And it is the normal manner by
which open source software progresses,

Mainlining is an additional cost that is not strictly
required by open source licenses, However, companies
can benefit from mainlining their changes, if done
correctly,

The specifics of how to mainline code and/or par—
ticipate in the community are dependent on each soft—
ware package, and the details are too numerous to
mention here, However a general overview of recom-—
mended steps is as follows:

- Hire or designate one or a few developers who
will specialize in this activity, Often, companies
hire people who are already experienced commmunity
participants, to overcome the steep learning curve
involved (discussed later).

- Have your specialists sign up to mailing lists
where relevant items are discussed (e.g. linux—
embedded @vger, kernel org for kernel issues related
to embedded products)

+ Have them learn the accepted practices for for—
matting and code submission,

+ Have them take the customizations you are mak—
ing (both ideas and code), and send them back
to the original project, This last step sounds easy,
but depending on the project can be quite dif—
ficult,

Some additional recommendations for this process

will be explained below,

Depending on the extent of your Linux usage, the
cost of this could be the part—time effort of a single
engineer, or the full-time effort of several engineers,
It is recommended to assign somewhere between 5%
to 10% of your total engineering effort on Linux to

the mainlining activity,

3.1 Benefits of mainlining

There are many benefits, both short—term and long—

term for mainlining,

3.1.1 Quick feedback

First, by describing your problem and/or posting
your code, you can receive quick feedback from other
developers on your ideas and implementation, This is
true whether your code is ever accepted or not.

Mainline project developers may comment on your
code, including your basic ideas and your implementa—
tion, This can give you useful feedback while you
are still developing a feature, to refine it, In some
cases it may prod you to take an entirely different
approach, Or, you may find that a solution already
exists, that will save you time to use, In order for
this feedback to be useful, it is obviously better to
receive it while you are still developing the software
in question, Thus, bug reports, fixes, and new code
should be submitted as soon as possible in your

development cycle,

3.1.2 Testing and bugfixes

Code which is actively pushed to the commumnity may
be tested by a large number of other developers, in
ways you never imagined, This can reveal bugs in
the code which would not otherwise be found,

For example, one change I submitted to the Linux
kernel was to add a high—resolution timestamp to the
kernel print function, to aid in measuring kernel
bootup time, I had been using this code for a few
years in my own projects (in violation of my own cur—
rent advice to submit things early). However, within
a few days after submitting it T received bug reports
from developers who found problems when the code
was called with bizarre parameters and in weird con—
figurations, These bugs could have appeared in my
own product, without warning, requiring substantial
time and effort to find and fix, By mainlining the
‘code, this problem was avoided,

In this particular case, the feedback was received
very quickly, Note that I received this feedback even
before the code was accepted for inclusion, When code
is accepted into the project of origin, there is more
possibility for widespread use, testing, and improvement

over a period of time,

3.1.3 Free maintenance as Linux changes

Linux changes quickly, For the past few years,
the Linux kernel has averaged approximately 6,600
lines of changes per dayl[3], Because of customiza-—
tion, integration and testing costs, CE companies
tend to stay with a particular release of Linux for a
long time, for a particular product line, However,
eventually a company will want to adopt a new release
of Linux in order to use new features in the OS,
When this happens, any customization that has occurred
is likely to not apply (or not apply easily) to the new
version, It often requires a lot of work to move
features and bugfixes to the new release, Sometimes,
the effort is so large that the feature is just dropped
in the move to the newer version,

When a change is accepted into the Linux kernel,
it becomes possible for other developers to work on
it. Often, when changes are made to related systems
or interfaces, other developers will perform the work
necessary to change your code as well, Sometimes you
will be asked to do the work, but in any event, you
will get timely notification of the changes required,
This makes the adaptation effort much easier ——
either because it is done for you, or because you
can do it while the change required is still minimal
and other interested developers are available to
provide fresh information and assistance,

I once submitted a change to the kernel to im—
prove bootup time by changing the way a particular
calibration was performed on kernel initialization, I
continued to use the feature via a configuration op—
tion for several kernel releases (It is still used in Sony
products today), After a few years, I wanted to examine
the change, and couldn’t find it, After searching for
it, I found that it had been moved and rewritten to
adapt to changes in the calibration function, This is
an isolated case (I don't recommend losing track of
your code), but I had been using an improved version
of my own enhancement for a long time, without even
realizing it!

The end result of this is that mainlining allows
you to reduce your development cost, both immediately
in terms of quick feedback and testing, whether your
change is accepted or not, and over the longer term,

as you reduce or eliminate your effort to maintain

Leveraging Open Source Software in Consumer Electronics § 63

your own enhancements,

3.2 Obstacles to Mainlining

While mainlining brings benefits, it can be an ex—
pensive and frustrating process, especially to the
inexperienced, Several factors raise obstacles that must
be overcome to be effective at mainlining,

+ Infamiliarity with process
- Version gap
» Product treadmill consumes all resources

One of the main costs of mainlining, as opposed
to just publishing, is the amount of process involved,
There is a very steep learning curve for people who
are inexperienced with open source practices, For a
change to be accepted by other developers, it must
be of high quality, and it must conform to many rules,
Also, it must be submitted to the right developers,
in the right manner, Responses to submitted code is
often terse, and sometimes quite harsh, The level of
brutal honesty, particularly in the kernel development
forums, can be discouraging and takes a bit of get—
ting used to,

For reasons of efficiency, code from new contri—
butors is not given the same attention and review as
that of well-recognized contributors, New contributors
are not trusted, Often, code must be reworked and
submitted multiple times, in order to make it accep—
table for inclusion, This may take weeks or months
of steady effort,

For these reasons, it is importani that a company
have specialists who work on the task of mainlin—
ing, It is not efficient for a company to try to get
all their Linux developers involved in community pro—
cesses, As a developer gains proficiency, adhering to
community processes becomes easier, Also, they build
up credentials within the community which lowers
the barrier to entry for their submissions, A single
well-known, experienced, contributor can have much
greater success at mainlining than a group of infre—
quent contributors,

Another big obstacle to mainlining code is that
often, the version of the kernel used for embedded
projects is somewhat behind the one actively being
developed in the original project, For example, some

companies are still doing development on kernel version

64§ 2008. 7. @ RAEHE A A 268 A7TE

2.6.11, which was a popular release of the Linux
kernel, That version was released over 3 years ago,
Any changes made to this kernel are likely to be
difficult to use with the current kernel version,
Even changes which are useful will require an
additional porting effort to make them work with the
latest kernel version, This additional porting effort,
and lack of immediate relevance to the current kernel,
is a significant barrier to the mainlining effort,
Finally, companies often have their engineers so
busy developing for each product release, that no time
is allocated for the extra work of mainlining code,
Product engineers are specialists who are in short
supply, and companies are always under extreme time
pressure to release their products, For most engineers,
the extra expense of additionally working with the
community in mainlining efforts is not worthwhile,
It makes more sense to utilize engineers who are

outside of the normal product development cycle.

3.3 Concern over loss of differentiation

Another big obstacle to mainlining is a concern
within the company about loss of differentiation due
to publishing code to competitors, Hopefully, the obli—
gation to publish derivative works is fully understood
when a company decides to use open source, How—
ever, there may still be people who believe that a
competitive advantage can be obtained by delaying or
not actively promoting the required publication of
enhancements, The act of not mainlining enhance—
ments is sometimes called “hoarding”,

The rationale for hoarding is that a competitor may
gain access to the implementation, and subsequently
be able to use it for “free”, Companies have long
considered their development efforts as one of the
principle means to differentiate themselves from their
competitors, Thus, in every corporation the result of
software development is, by default, viewed as a highly
valuable item to be guarded closely and prevented from
disclosure at all costs,

For some software (the part not based on open
source), this approach is correct, However, differentia—
tion in the area of commoditized software is a bad.
You actually don't want you software differing from

that of other companies, because then your costs to

customize, integrate and test that software will be
bigger than your competitor's, You would end up
losing some of the key benefits of open source,

A better way to look at this is that you want as
much of your development work integrated into the
commodity base as possible, in order to avoid losing
your development effort,

In this regard, open source software is very much
like standards, Standards are used to de—fragment
an industry — to provide an interoperability benefit
to the customer and ultimately to allow the industry
to grow, Companies often act vigorously to have their
implementation adopted for a standard, because they
know it will create delays and obstacles for their
competitors, who have to adopt their code and proto—
cols instead of using their own,

The same is true of open source, A developer who
successfully contributes their code to an open source
project reduces their own maintenance expenses, while
simultaneously increasing the long term development
cost for anyone else currently using a competing
implementation,

As a hypothetical example, let’s say that company
A has developed a large set of bugfixes for the USB
stack of the Linux kernel, Company A could “hoard”
these fixes, and use them to gain a competitive ad—
vantage, However, if the interfaces to the USB stack
change in a new version of the kernel (which is
very likely), then Company A’s fixes will no longer
be relevant., In order to use a new version of the
kernel, company A will have to do a costly re—write
and re—test of their fixes, Over time, the sunken
cost of USB testing and fixing for Company A could
actually turn into a barrier for them to adopt a
later kernel version, Meanwhile, company B (a com—
petitor to A) never received the benefit of company
A’s USB testing and fixing, but they were able to
move to a new kernel more easily, and they received
the benefit of the whole rest of the community’s
testing and fixes, It is very likely that the fixes from
the community were more numerous and better than
the ones from Company A, since the community itself
is much larger than company A’s Linux develop—

ment staff,

In this case, when company A wishes to move to
a new kernel version, its own hoarding activities
force company A into having to decide between their
own development effort, and the development effort
of the community, Hoarding can result in a short—
term advantage, but ultimately it puts company A at
a long—term disadvantage relative to its competitors
(Note also, that even with hoarding, company A’s
advantage is short—lived since they are required by
license to publish their changes when they ship their
product anyway),

Put another way, you can't prevent your competi—
tors from accessing your enhancements to open source
for very long, and mainlining is the best way to
preserve your development effort for your own re—
use, So you should actively mainline your changes as

part of your open source strategy,

4. Recommended Practices

This section describes a few practices that have
been found to be effective in overcoming obstacles
to mainlining, This is something of a random collec—
tion of different practices useful to avoid costs and
help the mainline effort, Additional good guidelines

for embedded developers are available[4],

4.1 Submit early and often

As the size of code grows, it becomes harder to
change it, Small corrections performed early in the
development of a new feature can avoid expensive
major re—writes later on, With a mature and complex
code base like the kernel, the chance of getting your
code right the first time is extremely small, Getting
feedback early is important to avoid wasting time
and effort,

Don’t wait until the end of your product develop—
ment cycle to release your code (This is a common

mistake).

4.2 Break changes into the smallest chunks po—
ssible

The chance of having code accepted decreases with
increasing size of the code base, Other developers
are as time—constrained as you are, and often do not

have time to look at large change sets, Submitting

Leveraging Open Source Software in Consumer Electronics § 65

code in small chunks is much more effective at
getting feedback,

4.3 Keep track of your patches

A specific problem for many CE product developers
is that their changes are not maintained in a for—
mat that is easy to mainline, For example, developers
often do not manage their source code so that their
change sets can be easily turned into standard—
format patch files, If possible, use a source code
management system that is similar to, or compatible
with, those used for the original project (eg. ‘git’ for
the Linux kernel).

Keep your changes available as patches, and keep
track of patches you have integrated from other
sources, which themselves have not been mainlined
(The ‘quilt’ patch management tool is good for this,
and is highly recommended), If you decide to upgrade
a patch you have integrated from another source
{for example, moving to a newer release of squashfs)
it is much easier if you have kept the original change
set boundaries intact,

Whatever you do, don’t just keep all your code in
some monolithic source tree, with no means to discern

the distinct change sets relative to upstream sources,

4.4 Do initial development on the latest kernel
version

This may be counter—intuitive, but sometimes it is
useful to do your initial development of some feature
or bugfix on the latest version of the kernel, and
backport it to the version you are using in your
product[4]. If you do this, you can take advantage
of input from other developers in the community
during your development, It is often less expensive to
back—port code to an older kernel version than to
up—port it to a recent version (although you should
definitely check to make sure that required inter—

faces are similar between the two kernel versions).

66 § 2008.7. BRAEE R A 264 A7E

5. Conclusion

Open source software will continue to be used in
CE products, Companies can reduce their development
costs associated with this use, by actively par—
ticipating in the open source community, Mainlining
one’s code to upstream projects yields short—term
and long—term benefits which outweigh the expense
involved, and the advantage of temporarily keeping

enhancements away from one’s competitors,

References

[1] LogFs and UBIFS are two recently created file
systems that address scalability and other issues
with previous Linux flash filesystems,

[2] The Open Source Initiative maintains a list of
licenses which meet the open source definition, See
http://www, opensource, org/licenses

[3] Greg Kroah—Hartman, et al,, “Linux Kernel De—
velopment — How Fast it is Going, Who is Doing [t,
What They are Doing, and Who is Sponsoring It”
April 2008, 29 May 2008 <http://www, linuxfoundation,
org/publications/linuxkerneldevelopment, phpy

[4] Andrew Morton, “kernel org development and the em—
bedded world”, April 2008, 29 May 2008 {http://www,
celinux, org/elc08 presentations/morton—ele—08, ppt)

Tim Bird

Tim Bird is a senior software engineer for Sony
Corporation of America, in their Silicon Valley
Software Group. Tim helps customize the Linux
kernel for use in Sony products. Also, Tim represents
Seny in the CE Limux Forum. He is Chair of the
CELF Architecture Group, where he directs
initiatives designed to improve Linux for use in embedded products. Tim
was formerly CTO of Lineo, one of the first embedded Linux vendors, and
has been working with Linux for over 15 years

E-mail : tim bird@am.sony.com

