Korean Journal of Remote Sensing, Vol.24, No.3, 2008, pp.245~250

A Prototype Implementation for 3D Feature Visualization
on Cell Phone using M3G API

Kiwon Lee ' and Woo Cheol Dong

Dept. of Information System Engineering, Hansung University

Abstract : According to public and industrial interests on mobile graphics, a preliminary implementation
regarding 3D feature visualization system on cell phone was performed using M3G AP, one of the de-facto
standards for mobile 3D graphic APL. Through this experiment, it is revealed that scene graph structure and
3D mobile file format supported from this API is useful one for 3D geo-modeling and rendering in mobile
environment. It is necessary that 3D mobile graphic standards can be considered as one component of
current mobile GIS services standards to provide value-added 3D GIS contents. |

Key Words : Cell phone, mobile 3D, J2ME, M3G APL

1. Introduction

In these days, mobile 3D graphics is regarded as
one of the emerging field in GIS field. However,
most mobile services are being provided as 2D or
2.5D (Green, 2005). Of course, mobile 3D is the
different history, compared with web 3D graphics in
the industrial stage. These two fields link to each
other in the up-to-the-date domain of Mobile-3D-
Web, but we deal with solely mobile 3D area in this
work.,

There are several internaftional standards suitable
for mobile 3D graphics. Although these are still under
development and advancement stage, they provide
the application programming interfaces (APIs) for a
wide range of mobile 3D applications. Among many
freely available 3D graphic APIs, three standard APIs

are widely adopted for the purpose of mobile 3D
application development: Open GL ES (Embedded
System), M3G (Mobile 3D Graphics) for Java ME
(Micro Edition), and Direct 3D mobile.

Open GL ES released by Khoros Group is widely
used for a range of mobile 3D applications in the
entertainment or the cross-platform domain-specific
field, and several mobile 3D visualization systems by
actual implementation have been reported (Santa ef
al., 2004; Etz, 2005; Lee and Kim, 2006; Kim and
Lee; 2006) and are stll under developing stage or
industrial uses in the various application areas
(Nadalutti er al., 2006; Nurminen; 2006). However,
additional graphic functions which are not contained
in them need to devise. First, this API does not
include 3D data structure. Second, utility toolkit for

user interfaces varies on mobile environment, on the

Received June 10, 2008; Revised June 19, 2008; Accepted ITune 20, 2008.

t Corresponding Author: Kiwon Lee (kilee @hansung.ac kr)

_245-

Korean Journal of Remote Sensing, Vol.24, No.3, 2008

Mobile GIS Application Services

Mobile Client Services

M?ﬁmf—éz

il Map request and display
w E?

i1 - Map p manipulation

H, e T b T L e e *‘*i

. | - Location identification
.| - Contents delivery

BLibia crtaer St e b A i STES SN L e A i

“—_, Mobile GIS

Functional Services

g - Location coordinate conversion
- Route searching

- Road information

- Moving path tracking

BRI

" GIS contents provision

- Conditional query

»»»»»

Es
QQQQQ

»Moblle GIS Data Services

e B e R e S A R

AR R

ZECEIE AR PR b LA

b
gw

.- GIS contents storage and management
- GIS contents information service

52

3]

i+~ GIS contents dissemination and handling

T O R RSB B BN SR S SRR

R R ST

MIC Draft on Mobile GIS Services Standards (2007)

Fig. 1. Functional parts in SD feature visualization in mobile GIS service standards draft (MIC, 2007).

| contrary to standard OpenGL glut functions. Third,
this supports the procedural graphic pipeline and
pixel pipeline so that it affects run-time performance
on function-callback execution. Whereas, Direct 3D
mobile shows advantageous aspects on those pitfalls
in OpenGL. ES, but it is dependent on MS Window
mobile OS. Among them, M3G API is used and
tested for the further 3D geo-spatial processing on
mobile environment, especially cell phone, in this
study. Comparison of these APIs is beyond the main
scope of this study. In some extents, these can be
applied with the consideration to implementation and
operation environments to fit a given target system.
This does not imply which one is better than others.
As for the other motivation in this study, the nation
or nternational standards of mobile GIS services do
not consider the mobile 3D visualization, but 2D map
display on mobile environment (Fig. 1). Thus, it is
necessary to demonstrate the possibilities of mobile

3D graphics approach.

2. M3G Technical Briefing

M3G API is known to JSR (Java Specification
Request) 184. This API provides 3D functionality in a
compact package for CLDC/MIDP devices. The API
provides two methods for displaying 3D graphics
content. The immediate mode API makes it possible
for applications to directly create and manipulate 3D
clements. Layered on top of this is a scene graph API,
also called retained mode, that makes it possible to
load and display entire 3D scenes that are designed
ahead of time. Applications are free to use whichever
approach is most appropriate or to use a combination
of the retained mode and immediate mode APIs. The
JSR 184 specification also defines a file format for
scene graphs (Pulli, 2004).

Unlike to Java 3D graphic API, this is for a
scalable, small-footprint, and interactive API for
mobile devices such as PDA or cell phone, working

with as optional package for J2ME (Java 2 platform,

—246-

A Profotype Implementation for 3D Fearure Visualization on Cell Phone using M3G APl

Micro Edition), CLDC (Connected Limited Device
Configuration), and MIDP (Mobile Information
Device Profile). CLDC and MIDP are a specification
of a framework for J2ME applications running on cell
phones and a specification to define the minimum
hardware, software, and network requirements for an
application to run on an embedded device,
respectively. While, M3G as lightweight APl is a
complement to the OpenGL ES API, so that it is
designed to be compatible with OpenGL ES API,
low-level standard APIL. It regarded as an immediate
mode. At tutorial in SIGGRAPH 2005, some
principles for M3G design was presented as follows:
No java code along critical paths, Cater for both
software and hardware, Maximize developer
productivity, Minimize engine complexity, Minimize
fragmentation, and Plan for future expansion. These
emphasized on difference with Java 3D, OpenGL,
OpenGL ES, or Direct 3D.

By means of a retained mode, M3G supports for a
scene graph as a tree structure to represent in a
compact and hierarchical one with respect to all the
elements of a 3D scene, as the rendered result. The
key classes in M3G are World, Graphics3D, and
Loader. World is a scene graph root node, and
Graphics3D is for 3D graphics rendering context
containing global state: frame buffer, depth buffer,
viewpoint, hints. Loader can load individual objects
and entire scene graphs in a file format with extension
of m3g (Pulli et al., 2005, 2008).

This file includes all data related to the given scene
graph. Fig. 2 represents an example of scene graph,
and each class in this scene graph is explained for the
summary (Table 1). This m3g format for 3D graph
model with all attributes for rendering can be
imported or exported any other commercial 3D

graphic software tools. The m3g file format is

"""" K ";3;;};”""""]
J—-J Sprrte3D [Group ; Morp?] Skinned
| | Mesh Mesh
User Ob}ecqé { 1 l
|
| l

_ Group
Group LMesh |
(Camera | Light |

Fig. 2. Basic level of a scene graph in M3G, excerpted from
Malizia (2006).

basically a file structure by one-to-one mapping
between object type and java classes, so that it is
possible that the importing and exporting into other
generic 3D graphic tools or browsers with decoding
and encoding functions of it,

Fig. 3 shows m3g file structure composing with
file 1dentifier of 12 bytes and several sections. Section
0 with header object should be contained, and section
I is for external reference. Actual attributes and
geometric information to be rendered are defined in
other sections.

This is one of the main advantageous aspects for
mobile applications using M3G API, and regarded as
a distinguished feature compared with OpenGL ES
implementation. In many cases, there is little else to
an application than displaying a scene and playing
back some animation created in a 3D modeling tool.
Even in more demanding cases, it greatly speeds up
development if 1t 1s easy to import objects and
animations into MIDlets which means MIDP
applications. Therefore, the API must provide
importer functions for different data types, such as
textures, meshes, amimations, and scene hierarchies.
The data must be encoded 1n a binary format for

compact storage and transmission.

247~

Korean Journal of Remote Sensing, Vol.24, No.3, 2008

Background
Camera A node that defines a camera. It is preprogrammed with two projection matrices: parallel and perspective.
Graphics3D The main render class for M3G. Capable of retained or immediate rendering.
Group .1 A scene graph node capable of storing other nodes.
Light A scene graph node that can define ambient, directional, omni-directional, and spotlights.
Loader Imports a .m3g file.
Matenal Subcomponent for Appearance that defines the material for an object.
Mesh Defines a polygonal mesh.
Morphing Mesh | Manipulates meshes that have morph targets.
Node An abstract class shared by all nodes.
Object3D An abstract class from which all nodes capable of existing in the 3D world are derived.

Skinned Mesh | A scene graph node that represents a mesh with skeletal animation.
Sprite3D A scene graph node used to define 2D billboards.
Texture2D A subcomponent of Texture2D used to map Image2D objects to Sprite3D and Mesh3D.
Transform A generic class for manipulating transformations.
Transformable | An abstract class that gives Sprite3D and Node the capability to store and manipulate transformations.
World A top-level node for scene graphs.

File identifier | Section § Section n

Compression | Total Section | Uncompressed
Scheme iength Length

p ™

Object Type| Length | Data J

Object & |Object niChecksum

Fig. 3. M3G file structure defined in JSR 184.

3. Implementation Result

In this study, JDK 1.5.0_15, Netbean IDE 6.01
mobility pack, and WTK 2.52 (CLDC1.1/MIDP2.0)
were applied for the implementation processes on
Windows XP. As for 3D model in testing stage, a
simple 3D feature model (Fig. 4) was used in the
style of 3D objects, similar to Pipho and LaMonthe
(2003). This model is for a single 3D feature with ID
1n header, and each face in x-y-z modeling coordinate

system possesses texture image registered in u-v

coordinate system. This model can be replicated with
other coordinate values and texture image through
scenc graph scheme. Besides 3D features,
background and base images were also processed as
texture images, and these can be changed according
to users’ selection. While, the relationship and
association among node, object3D, and transformable
class, as class instances used in this implementation
process, is shown in Fig. 5. Object3D class is a base
class in 3D scene construction related to scene graph
manipulation. Transformable class and node class are
used for positioning, rotating, and scaling of 3D
objects rendered.

Fig. 6 represents some rendered scenes in the
emulator environment. While, the camera object in
the control box composed of 4 direction arrows helps
for 3D model transformation such as translation and

rotation.

_248-

A Profotype Implementation for 3D Feature Visualization on Cell Phone using M3G AP

~ iD H 4. Concluding Remarks

Number of Vertices
Number of Faces
Nunsber of Textures

Header

A preliminary implementation regarding 3D

U, V {float} (- Texture Coordinates

1

feature visualization on cell phone was performed

Indices Faces | with the purpose of the mobile application of the

further 3D geo-processing techniques using M3G

Texture 3DData [—

X, Y, Z (float)
Fig. 4. A 3D feature model applied in this implementation. based on scene graph structure in retained mode, are

API. Practically, 3D feature models with texture,

Every class in M3G, except for Light(javax.microedition.m3g.Light)
Loader, Transform, Raylntersection, Graphic3D

Camera(javax.microedition. m3g. Camera)
Mesh{javax.microedition.m3g. Mesh)

Sprite3D{javax.microedition.m3g. Sprite3D
Group(javax.microedition.m3g. Group)

Node and TexturezD

-+

position, rotation,
and scale of nodes

‘Object3D Transformable Node

Relationship of Node, Object3D, and Transformabie classes
Fig. 5. Relationship of node, object3D, and transformable classes, excerpted from Morales and Nelson {2007).

g

i pEENEEREEE Y

Nase ¥ P Eey b Fawaneen ' Lo g T S o

UEEERRELINLL Shkae i B b A e RE: + f 3 sgasanEneen i tuch bald
2502 i e R 2 S At Ay iE ¥ . PR T i
b "gﬁ () [' Lt e HiE LA : Sl Eraie iy
%?ﬂﬁ;j; «""Eﬁoé LiLs i o ; ! $“sﬁb@g;‘ : $ "_’. - S fgg 4 ; ?";"11 MI'

i
e S

Py Ehp e yiey = u Ehed e
3 FEEE LRI A R Se i AR DR b R T 2 LIS LEEH

MiDlet Miow Help

b i
: g Din ¢
: . . e , B g :
. o R B AT
N kil 8 T as o b
b1 . . .- : BB n R ST MR R gy i o
p R SR ina SaieiE

Bl 5 2R

G B
i g A
s Ty

GhhEsanh

AAERAEE ¥
FhEiauns
Faann

PO 5 b

ShnhEy
ket
Ehsaents s
ek

st
i 3
H e

T4
]

.Lz
o

Tt
Seats

Fa

i
E1

i B IR
frasie
*334393
Igagnely
ST ;
Shnhs ; : I

HTREIESTEPEY

Freart
R

T

353 bpeE4 SRR I

PR
EESEAT ANt]
ot g R
e S A
prete e

i
et w.g_ggg%@gg sty
agne o172 &

S TR

i

Gan eyt e EERRTEL

§id

Tmehefd R

Tiwie

TaRIil

e

5

FUR AN
Towhgrxe

FEp

o B et
$$Q§¥”“$§§§§§Q

g G T e A
AR % ek
Bhe i e SrThiu

o T
i I R
&G B

s
BoESuwrapants

A
i

|

SEEREREE EEE
%
FEa

4

AR
B ad
wamdEE fe
g
X
Gahavsais

ety

31t

1
4
3553
Lo riaRats

:v»*

Wiy

ANy

Lhho i
s 5

G B
et

yck s
i
&

L

eyl
Te e Y R

et

.

o bk v

REEe
£5
&

P A
ey g i1

EhuBIEIIL o
ot o B :

;.;w;wpuw‘

DEF

i 5
i 4
e et

A ABL

[pdidnd
; g e

P GhRieeraes Sy
Pl
e

b

Ry
GesuidyaEREs

FRadannE

gt

SR pard gl PO S B R

P PEISETIARS

v aemban

o et e B RS TR T

shed
5

¥t

u;,;;;g;?m

|-'9%§§;;$$§;

WXYE

pAp T

2

g s et

Y wexs

Dt i w e nEEan

Ty N

M -
s kv r il Gn kan e

R SR

R
e L P BT
e LE ¥

SPRLE

ot Gk

M

Fig. 6. Implementation resuits with the background and base texture images, testing in cell phone emulator.

249

Korean Journal of Remote densing, Vol.24, No.3, 2008

constructed. This implementation scheme using M3G
API shows some advantageous aspects. First, the
performance for object-based 3D visualization and
additional transformation process is on acceptable
level to general users’ sides. Second, 3D model in
scene graph model can be directly imported and
exported to other 3D modeling and rendering system
in the form of m3g file format, unlike OpenGL ES
APL Third, the realistic 3D scene generation in cell
phone can flourish value-added contents for mobile
GIS services. Fourth, the possibility for 3D
processing standards specification for mobile GIS
services can be considered in the next stage of

standard development.

Acknowledgements

This research was financially supported by

Hansung University in the year of 2008.

References

Etz, M. and J. Haist, 2005. Mobile 3D Viewer,
CGTopics, 4, 28p.

Green, D. R., 2005. Going Mobile: Mobile
Technologies and G1S, URISA, 60p.

Hotele, C. (Ed), 2007. Mobile 3D Graphics: Learning
3D Graphics with the Java Micro Edition,
3035p, 432p.

Kim, S. Y. and K. Lee, 2006. Development of
Mobile 3D Terrain Viewer with Texture

Mapping of Satellite Images, Korean Journal

of Remote Sensing, 22(5): 351-356.

Lee, K. and S.-Y. Kim, 2006. Development of
Mobile 3D Urban Landscape Authoring and
Rendering System, Korean Journal of
Remote Sensing, 22(3). 221-228.

Malizia, A., 2006. Mobile 3D Graphics, Springer,
155p.

Morales, C. and D. Nelson, 2007. Mobile 3D Game
Development: From Start to Market, Clarles
River Media.

Nadalutti, D., L. Chittaro, and F. Buttussi, 2006.
Rendering of X3D Content on Mobile
Devices with OpenGL ES, Proceedings of
Web3D, 2006: 19-26.

Nurminen, A., 2006. m-LOMA - a Mobile 3D City
Map, Proceedings of Web3D 2006: 7-18.

Pulli, K., 2004. The rise of mobile graphics, Nokia
Information Quarterly, 3: 14-15.

Pulli, K., T. Aarnio, K. Roimela, and J. Vaarala,
2005. Designing Graphics Programming
Interfaces for Mobile Devices, [EEE
Computer Graphics and Applicatfons, 25(8).

Pulli, K., T. Aarnio, K. Roimela, and J. Vaarala,

2008. Mobile3D Graphics with OpenGL ES
and M3G, Elsevier, pp. 120-129, 314
Pipho, E and A. LaMonthe, 2003. Focus on 3D Model,
The Premier Press Game Development Series,
2005 |
Sanna, A., C. Zunino, and F. Lamberti, 2004. A
 distributed architecture for searching,
retrieving and visualizing complex 3D
models on Personal Digital Assistants, Int.
Jour. Human-Computer Studies, 60: 701-716.

—250-

