DOI QR코드

DOI QR Code

Statistical Characteristics of Solar Wind Dynamic Pressure Enhancements During Geomagnetic Storms

  • Choi, C.R. (Department of Astronomy and Space Science, College of Natural Sciences and Institute for Basic Sciences Chungbuk National University) ;
  • Kim, K.C. (Department of Astronomy and Space Science, College of Natural Sciences and Institute for Basic Sciences Chungbuk National University) ;
  • Lee, D.Y. (Department of Astronomy and Space Science, College of Natural Sciences and Institute for Basic Sciences Chungbuk National University) ;
  • Kim, J.H. (Department of Astronomy and Space Science, College of Natural Sciences and Institute for Basic Sciences Chungbuk National University) ;
  • Lee, E. (Space Science Laboratory, University of California)
  • Published : 2008.06.15

Abstract

Solar wind dynamic pressure enhancements are known to cause various types of disturbances to the magnetosphere. In particular, dynamic pressure enhancements may affect the evolution of magnetic storms when they occur during storm times. In this paper, we have investigated the statistical significance and features of dynamic pressure enhancements during magnetic storm times. For the investigation, we have used a total of 91 geomagnetic storms for 2001-2003, for which the Dst minimum $(Dst_{min})$ is below -50 nT. Also, we have imposed a set of selection criteria for a pressure enhancement to be considered an event: The main selection criterion is that the pressure increases by ${\geq}50%\;or\;{\geq}3nPa$ within 30 min and remains to be elevated for 10 min or longer. For our statistical analysis, we define the storm time to be the interval from the main Dst decrease, through $Dst_{min}$, to the point where the Dst index recovers by 50%. Our main results are summarized as follows. $(i){\sim}$ 81% of the studied storms indicate at least one event of pressure enhancements. When averaged over all the 91 storms, the occurrence rate is ${\sim}$ 4.5 pressure enhancement events per storm and ${\sim}$ 0.15 pressure enhancement events per hour. (ii) The occurrence rate of the pressure enhancements is about three times higher for CME-driven storm times than for CIR-driven storm times. (iii) Only 21.1% of the pressure enhancements show a clear association with an interplanetary shock. (iv) A large number of the pressure enhancement events are accompanied with a simultaneous change of IMF $B_y$ and/or $B_z$: For example, 73.5% of the pressure enhancement events are associated with an IMF change of either $|{\Delta}B_z|>2nT\;or\;|{\Delta}B_y|>2nT$. This last finding suggests that one should consider possible interplay effects between the simultaneous pressure and IMF changes in many situations.

Keywords

References

  1. Boudouridis,A., Lyons, L. R., Zesta, E.,& Ruohoniemi, J. M. 2007, JGR, 112, A06201, doi:10.1029/ 2006JA012141
  2. Boudouridis, A., Zesta, E., Lyons, L. R., Anderson, P. C., & Lummerzheim, D. 2003, JGR, 108, 8012, doi:10.1029/2002JA009373
  3. Burch, J. L. 1972, JGR, 77, 6529
  4. Burton, R. K., McPherron, R. L., & Russell, C. T. 1975, JGR, 80, 4204 https://doi.org/10.1029/JA080i031p04204
  5. Chua, D., Parks, G., Brittnacher, M., Peria, W., Germany, G., Spann, J., & Carlson, C. 2001, JGR, 106, 5945 https://doi.org/10.1029/2000JA003027
  6. Collier, M. R., Slavin, J. A., Lepping, R. P., Szabo, A., & Ogilvie, K. 1998, GRL, 25, 2509 https://doi.org/10.1029/98GL00735
  7. Fairfield, D. H. & Jones, J. 1996, JGR, 101, 7785 https://doi.org/10.1029/95JA03713
  8. Fenrich, F. R. & Luhmann, J. G. 1998, GRL, 25, 2999 https://doi.org/10.1029/98GL51180
  9. Heppner, J. P. 1955, JGR, 60, 29 https://doi.org/10.1029/JZ060i001p00029
  10. Jorgensen, A. M., Henderson, M. G. , Roelof, E. C., Reeves, G. D., & Henderson, H. E. 2001, JGR, 106, 1931 https://doi.org/10.1029/2000JA000124
  11. Kamide, Y., Baumjohann,W., Daglis, I. A., Gonzalez,W. D., Grande,M., Joselyn, J. A.,McPherron, R. L., Phillips, J. L., Reeves, E. G. D., Rostoker, G., Sharma, A. S., Singer, H. J., Tsurutani, B. T., & Vasyliunas, V. M. 1998, JGR, 103, 17,705
  12. Kawano, H., Yamamoto, T., Kokubun, S., & Lepping, R. P. 1992, JGR, 97, 17,177
  13. Kawasaki, K., Akasofu, S.-I., Yasuhara, F., & Meng, C.-I. 1971, JGR, 76, 6781
  14. Kim, K.-H., Cattell, C. A., Lee, D.-H., Balogh, A., Lucek, E., Andre, M., Khotyaintsev,Y., & R'eme, H. 2004, JGR, 109, doi:10.1029/2003JA010328
  15. Kim, K. C., Lee, D.-Y., Lee, E. S., Choi, C. R., Kim, K. H., Moon, Y. J., Cho, K. S., Park, Y. D., & Han, W. Y. 2005, JGR, 110, A09223, doi:10.1029/2005JA011097
  16. Kokubun, S., McPherron, R. L., & Russell, C. T. 1977, JGR, 82, 74 https://doi.org/10.1029/JA082i001p00074
  17. Lee, D.-Y., Lyons, L. R., Kim, K. C., Baek, J.-H., Kim, K.-H., Kim, H.-J.,Weygand, J., Moon, Y.-J., Cho, K.-S., Park, Y. D., & Han, W. 2006, JGR, 111, A12214, doi:10.1029/2006JA011685
  18. Lee, D.-Y., Lyons, L. R., & Reeves, G. D. 2005, JGR, 110, A09213, doi:10.1029/2005JA011091
  19. Lee, D.-Y., Lyons, L. R., Weygand, J. M., & Wang, C.-P. 2007a, JGR, 112, A06240, doi:10.1029/2007JA012249
  20. Lee, D.-Y., Lyons, L. R., & Yumoto, K. 2004, JGR, 109, A04202, doi:10.1029/2003JA010246
  21. Lee, D.-Y., Ohtani, S., Brandt, P. C., & Lyons, L. R. 2007b, JGR, 112, A09210, doi:10.1029/2007JA012399
  22. Li, X., Baker, D. N., Elkington, S., Temerin, M., Reeves, G. D., Belian, R. D., Blake, J. B., Singer, H. J., Peria, W., & Parks, G. 2003, J. Atmos. Solar-Terrs. Phys., 65, 233
  23. Liou, K., Newell, P. T., Meng, C.-I., Wu, C.-C., & Lepping, R. P. 2003, JGR, 108, doi:10.1029/ 2003JA009984
  24. Lukianova, R. 2003, JGR, 108, 1428 https://doi.org/10.1029/2002JA009790
  25. Lyons, L. R., Lee, D.-Y.,Wang, C.-P., &Mende, S. 2005, JGR, 110, A08208, doi:10.1029/2005JA01 1089
  26. Lyons, L. R., Zesta, E., Samson, J. C., & Reeves, G. D. 2000, GRL, 27, 3237 https://doi.org/10.1029/1999GL000014
  27. Nakai, H., Kamide, Y., & Russell, C. T. 1991, JGR, 96, 5511 https://doi.org/10.1029/90JA02361
  28. Ostapenko, A. A. & Maltsev, Y. P. 1998, GRL, 25, 261 https://doi.org/10.1029/98GL00002
  29. Russell, C. T., Ginskey, M., & Petrinec, S. M. 1994, JGR, 99, 253 https://doi.org/10.1029/93JA02288
  30. Schieldge, J. P. & Siscoe, G. L. 1970, J. Atmos. Terr. Phys., 32, 1819 https://doi.org/10.1016/0021-9169(70)90139-X
  31. Shi, Y., Zesta, E., Lyons, L. R., Yumoto, K., & Kitamura, K. 2006, JGR, 111, A10216, doi:10.1029/2005JA011532
  32. Sibeck, D. G. & Croley, D. J. Jr. 1991, JGR, 96, 1669 https://doi.org/10.1029/90JA02357
  33. Wang, C. B., Chao, J. K., & Lin, C.-H. 2003, JGR, 108, 1341
  34. Weimer, D. R. 2004, JGR, 109, doi:10.1029/2004JA010691
  35. Weimer, D. R., Ober, D. M., Maynard, N. C., Collier, M. R., McComas, D. J., Ness, N. F., Smith, C. W., & Watermann, J. 2003, JGR, 108, doi:10.1029/2002JA009405
  36. Wing, S., Sibeck, D. G.,Wiltberger, M., &Singer, H. 2002, JGR, 107, 1222, doi:10.1029/2001JA009 156
  37. Zesta, E., Singer, H. J., Lummerzheim, D., Russel, C. T., Lyons, L. R., & Brittnacher, M. J. 2000, Geophy Monogr, 118, 217
  38. Zhou, X. & Tsurutani, B. T. 2001, JGR, 106, 18,957

Cited by

  1. Variation of Magnetic Field (By, Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period vol.28, pp.2, 2011, https://doi.org/10.5140/JASS.2011.28.2.123