Electrical Properties of PCCYA-doped ZnO-based Varistors

Choon-Woo Nahm^a

Department of Electrical Engineering, Dongeui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714, Korea

^aE-mail: <u>cwnahm@deu.ac.kr</u>

(Received March 17 2008, Accepted June 10 2008)

The microstructure, voltage-current, and capacitance-voltage relations of PCCYA doped ZnO-based varistors were investigated for different amounts of Al_2O_3 . As the Al_2O_3 amount increased, the average grain size (d) increased from d=4.3 to d=5.5 µm and the sintered density (ρ) increased from ρ =5.63 to ρ =5.67 g/cm³. As the Al_2O_3 amount increased, the breakdown voltage (V_B) increased from V_B =633 to V_B =71 V/mm and the non-ohmic coefficient (α) increased from α =47 to α =4. Al_2O_3 served as a donor due to the donor density (N_d), which increases in the range of N_d =0.77-1.85×10¹⁸/cm³ with increasing amount of Al_2O_3 .

Keywords: Microstructure, Al₂O₃, Electrical properties, Varistors

1. INTRODUCTION

Pure zinc oxide exhibits ohmic properties even at any sintering condition, whereas the zinc oxide doped with several different metal oxides exhibits non-ohmic properties, which give rise to the decrease of impedance with increasing voltage. This non-ohmicity of currentvoltage properties is due to the presence of a double Schottky barrier (DSB) formed at the active grain boundaries containing many trap states. Owing to highly nonlinear properties, ZnO varistors are used widely in the field of overvoltage protection systems from electronic circuits to electric power systems[1,2]. ZnO varistors are generally divided into two categories, called Bi₂O₃-based and Pr₆O₁₁-based ceramics, in terms of varistor forming oxides. ZnO-Bi₂O₃-based ceramics have been mainly studied in different aspects since discovery of ZnO non-ohmic ceramics. Although ZnO-Bi₂O₃-based ceramics show excellent non-ohmic properties, Bi₂O₃ easily reacts with some metals used in preparing multilayer chip non-ohmic ceramics, and it destroys the multilayer structure[3]. And it is reported to have an additional insulating spinel phase, which does not play any role in electrical conduction[3]. Recently, ZnO-Pr₆O₁₁-based ceramics have been studied in order to improve a few drawbacks[3] associated with Bi₂O₃ [4-11].

To solve these problems and to obtain the high performance, it is very important to comprehend the additives-doping effect on non-ohmic properties. Al₂O₃ is often added to ZnO-Bi₂O₃-based varistors to improve the performance[12-14]. However, the role of Al₂O₃ in

the $ZnO-Pr_6O_{11}$ -based varistors was found to partially differ from the $ZnO-Bi_2O_3$ -based varistors in a few respects.

In this work, Al₂O₃ doping effect on microstructure and electrical properties of Pr-Co-Cr-Y-doped ZnO-based varistors were investigated.

2. EXPEIMENTAL PROCEDURE

2.1 Sample preparation

Reagent-grade raw materials were used for preparing the varistors with a composition of (97.5-x) mol% ZnO, 0.5 mol% Pr₆O₁₁, 1.0 mol% CoO, 0.5 mol% Cr₂O₃, 0.5 mol% Y_2O_3 , x mol% Al_2O_3 (x = 0.001, 0.005, 0.01, 0.1). Raw materials were mixed by ball milling with zirconia balls and acetone in a polypropylene bottle for 24 h. The mixture was dried at 120 °C for 12 h and calcined in air at 750 °C for 2 h. The calcined mixture was pulverized using an agate mortar/pestle and after 2 wt% polyvinyl alcohol (PVA) binder addition, granulated by sieving 100-mesh screen to produce starting powder. The powder was uniaxially pressed into discs of 10 mm in diameter and 2 mm in thickness at a pressure of 800 kg/cm². The discs were covered with raw powder in alumina crucible, sintered at 1280 °C for 1 h. The sintered samples were lapped and polished to 1.0 mm thickness. The final samples were about 8 mm in diameter and 1.0 mm in thickness. Silver paste was coated on both faces of the samples and ohmic contact of electrodes was formed by heating at 600 °C for 10 min. The electrodes were 5 mm in diameter.

2.2 Microstructure examination

Both sides of the samples was lapped and ground with SiC paper and polished with Al₂O₃ powders to a mirror-like surface. The polished samples were thermally etched at 1100 °C for 30 min. The surface microstructure was examined by a scanning electron microscope (SEM, Hitachi S2400, Japan). The average grain size (d) was determined by the lineal intercept method as follows:

$$d = \frac{1.56L}{MN} \tag{1}$$

where L is the random line length on the micrograph, M is the magnification of the micrograph, and N is the number of the grain boundaries intercepted by lines[15]. The crystalline phases were identified by an X-ray diffractometry (XRD, Rigaku D/max 2100, Japan) with CuK_{α} radiation. The sintered density (ρ) of ceramics was measured by the Archimedes method.

2.3 Electrical measurement

The V-I characteristics of the varistors were measured using a high voltage source measure unit (Keithley 237). The breakdown voltage (V_B) was measured at a current density of 1.0 mA/cm² and the leakage current (I_L) was measured at 0.80 V_B . In addition, the nonlinear coefficient (α) was determined from the following expression.

$$\alpha = \frac{\log J_2 - \log J_1}{\log E_2 - \log E_1} \tag{2}$$

where $J_1 = 1.0 \text{ mA/cm}^2$, $J_2 = 10 \text{ mA/cm}^2$, and E_1 and E_2 are the electric fields corresponding to J_1 and J_2 , respectively.

The capacitance-voltage (C-V) characteristics of varistors were measured at 1 kHz using a RLC meter (QuadTech 7600) and an electrometer (Keithley 617). The donor concentration (N_d) and the barrier height (ϕ_b) were determined by the equation $(1/C_b-1/C_{bo})^2$ = $2(\phi_b+V_{gb})/q\epsilon N_d[16]$, where C_b is the capacitance per unit area of a grain boundary, Cbo is the value of Cb when V_{gb}=0, V_{gb} is the applied voltage per grain boundary, q is the electronic charge, and ε is the permittivity of ZnO $(\varepsilon=8.5\varepsilon_0)$. The density of interface states (N_t) at the grain boundary determined equation was by the $N_t = (2\epsilon N_d \phi_b/q)^{1/2} [16].$

3. RESULTS AND DISCUUSION

Figure 1 shows the SEM micrographs of the samples for different amounts of Al₂O₃. The samples added with Al₂O₃ exhibited the same phases composition as the sample without Al₂O₃[4]. For all the samples, the XRD patterns, as shown in Fig. 2, revealed the presence of Pr-

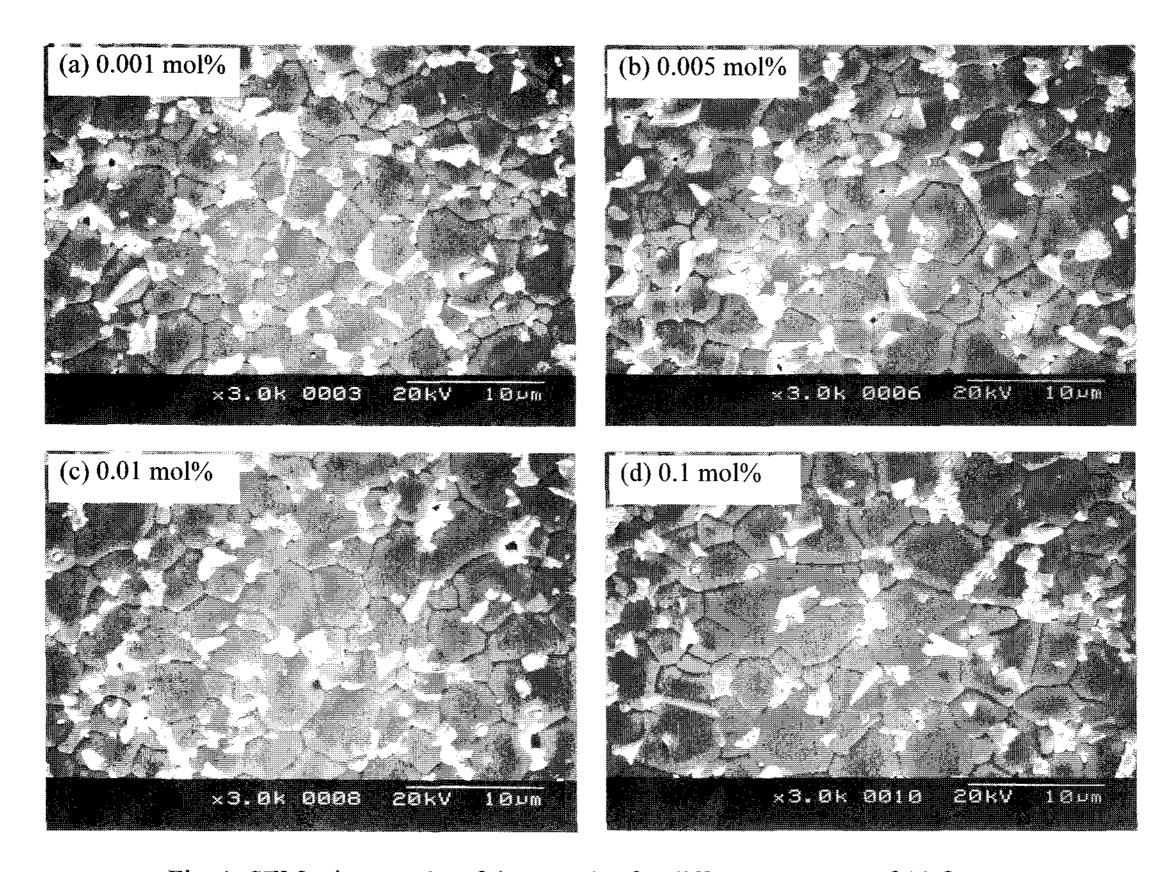


Fig. 1. SEM micrographs of the samples for different amounts of Al₂O₃.

and Y-rich intergranular layer (whitish) as a minor secondary phase, in addition to a major phase of hexagonal ZnO (blackish). No ZnAl₂O₄ spinel phase related to Al was detected. Therefore, it is assumed that the majority of Al atoms are solved into ZnO matrix, because Al³⁺ ionic radius is smaller than that of Zn²⁺. The average grain size (d) increased from 4.3 to 5.5 µm with the increase of amount of Al₂O₃. As a result, Al₂O₃ acted as a prompter for grain growth. If spinel phase of ZnAl₂O₄ was formed, the grain average size would be reduced due to the inhibition of ZnO grain growth. The sintered density (p) slightly increased from 5.63 to 5.67 g/cm³ corresponding to 97.4-98.1 % of theoretical density (TD=5.78 g/cm³ in ZnO). Al₂O₃ doping did not significantly modify the densification process. However, it should be noted that the behavior of the grain size and sintered density with the increase of amount of Al₂O₃ showed the opposite results compared with Bi₂O₃-based samples[12-14]. The detailed microstructure parameters are summarized in Table 1.

Figure 3 shows the E-J characteristics of the samples for different amounts of Al₂O₃. The curves show the conduction characteristics divided into two regions: an ohmic region before the breakdown field and a non-ohmic region after the breakdown field. The sharper the

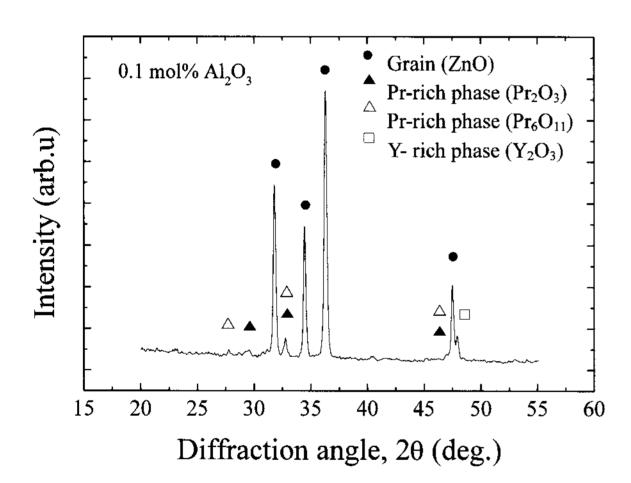
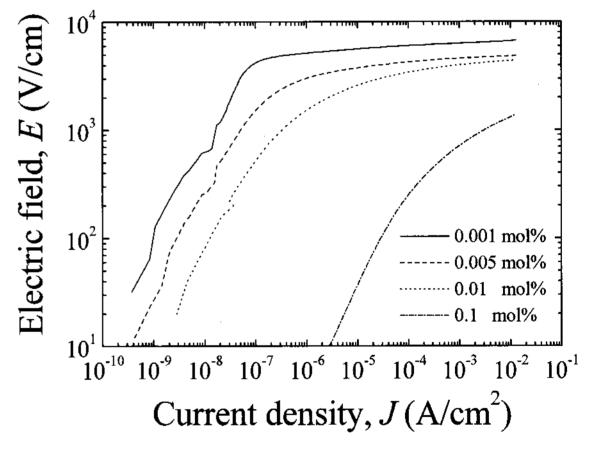


Fig. 2. XRD patterns of the samples.

knee of the curves between the two regions, the better the nonlinear properties. On adding more Al₂O₃, the knee gradually becomes less pronounced and as a result, the non-ohmic properties are deteriorated. Therefore, an appropriate addition of Al₂O₃ seems to enhance non-ohmic properties, whereas an excess addition results in bad non-ohmic properties.

The breakdown voltage (V_B) greatly decreased from $V_B=633$ to $V_B=71$ V/mm with the increase of amount of Al₂O₃. This is attributed firstly to the decrease of the number of the grain boundaries caused by the increase of the ZnO grain size, and secondly, to the decrease of breakdown voltage per grain boundary (vgb). The vgb is calculated by the following equation: $V_B = N_{gb} \cdot v_{gb} =$ (D/d) v_{gb}, where V_B is the breakdown voltage, N_{gb} is the number of the grain boundaries, d is the average grain size, and D is the thickness of sample. The samples added with Al₂O₃ more than 0.1 mol% exhibited much lower v_{gb} (0.4 V/gb) value than a general value of 2-3 V/gb. These samples will exhibit very poor non-ohmic properties presumably. It should be noted that the behavior of E_B showed the different result in comparison to ZnO-Bi₂O₃-based samples[13,14].

The non-ohmic coefficient (α) slightly increased from α =44 to α =47 with increasing amount of Al₂O₃ at less



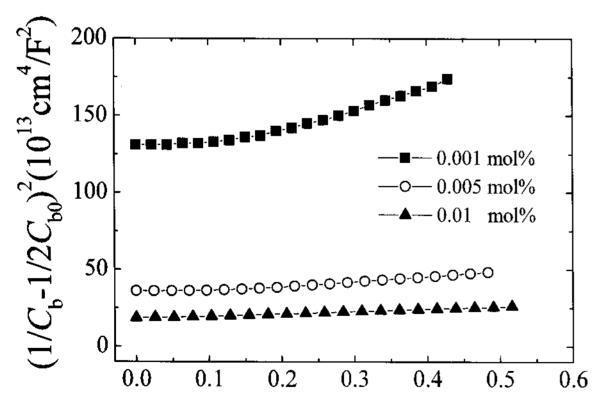

Fig. 3. E-J characteristics of the samples for different amounts of Al₂O₃.

Table 1. Microstructure, V-I, and C-V characteristic parameters of the samples for different amounts of Al₂O₃.

Al ₂ O ₃ amount (mol%)	d (μm)	ρ (g/cm ³)	V _B (V/cm)	v _{gb} (V/gb)	α	I _L (μA)	$N_{\rm d}$ $(10^{18}{\rm cm}^{-3})$	N_t (10 ¹² cm ⁻²)	Φ _b (eV)
0.001	4.3	5.63	633	2.7	44	0.1	0.77	3.12	1.35
0.005	4.8	5.65	461	2.2	47	1.4	1.51	4.45	1.40
0.01	5.2	5.66	401	2.1	25	9.7	1.85	4.61	1.22
0.1	5.5	5.67	71	0.4	4	0.1 mA	-	_	_

than 0.005 mol%. However, the further additions greatly decreased it and only α =4 at 0.1 mol%. Although only 0.1 mol% in Al_2O_3 amount compared with general adders is never a lot of amounts, it deteriorated non-ohmic properties. The leakage current (I_L) increased from I_L =0.1 μA to I_L =0.1 mA with increasing amount of Al_2O_3 . As a result, it was confirmed that Al_2O_3 has a strong effect on the non-ohmic properties. It is assumed that Al_2O_3 doping effect on non-ohmic properties is related to electronic state at the grain boundary. The detailed V-I characteristic parameters are summarized in Table 1.

Figure 4 shows the C-V characteristics of the samples for different amounts of Al₂O₃. It is assumed that the C-V characteristics for different amounts of Al₂O₃ will vary because the C-V characteristic curves are variously arranged according to different amounts of Al₂O₃. The C-V parameters such as the donor density (N_d), barrier height (Φ_b) , and density of interface states (N_t) are summarized in Table 1. The increase of Al₂O₃ amount resulted in the increase of the donor density (N_d) from $N_d=0.77\times10^{18}/cm^3$ to $N_d=1.85\times10^{18}/cm^3$. It is believed that positively charged trivalent Al ion easily substitutes for the positively charged divalent Zn ion site, because trivalent Al ionic radius is smaller than that of divalent Zn ion. The chemical-defect reaction using Kroger-Vink notation can be written as the following equation: $Al_2O_3 \xrightarrow{ZnO} Al_{Zn}^{\cdot} + e' + 3O_O^{\times}$, where Al_{Zn}^{\cdot} is a positively charged Al ion substituted for Zn lattice site and O_0^{\times} is a neutral oxygen of oxygen lattice site. The electron generated in reaction above increases the donor concentration. So, Al₂O₃ increases electron carrier density by exciting electron to conduction band. As a result, the positively charged trivalent Al ion served as a donor, as previously reported data[12]. The density of interface states (N_t) increased from N_t= 3.12×10^{12} /cm² to $N_t=4.61\times10^{12}/\text{cm}^2$ with the increase of amount of Al_2O_3 .

Voltage per grain boundary, $V_{\rm gb}$ (V/gb)

Fig. 4. C-V characteristics of the samples for different amounts of Al₂O₃.

For the amount of Al_2O_3 less than 0.005 mol%, the barrier height (Φ_b) at the grain boundaries increased up to maximum value (1.40 eV) at 0.005 mol%. The further additions decreased it and it exhibited a minimum value (1.22 eV) at 0.01 mol% (not measured for 0.1 mol%). This coincides with the variation of the α in E-J characteristics.

4. CONCLUSION

The microstructure and electrical properties of varistors PCCYA-doped ZnO-based varistors were investigated for different amount of Al_2O_3 . The average grain size (d) slightly increased from d=4.3 to d=5.5 μ m with increasing amount of Al_2O_3 . As the Al_2O_3 amount increased, the breakdown voltage increased from V_B =633 to V_B =71 V/mm and the non-ohmic coefficient increased from α =47 to α =4. Al_2O_3 served as a donor Al_2O_3 served as a donor due to the donor density (N_d), which increases in the range of N_d =0.77-1.85×10¹⁸/cm³ with increasing amount of Al_2O_3 .

ACKNOWLEDGEMENT

This work was supported by Dongeui University grant (No. 2007AA174).

REFERENCE

- [1] L. M. Levinson and H. R. Philipp, "Zinc oxide varistor-a review", Amer. Ceram. Soc. Bull., Vol. 65, No. 4, p. 639, 1986.
- [2] T. K. Gupta, "Application of zinc oxide varistor", J. Amer. Ceram. Soc., Vol. 73, No. 7, p. 1817, 1990.
- [3] Y. S. Lee and T. Y. Tseng, "Phase identification and electrical properties in ZnO-glass varistors", J. Amer. Ceram. Soc., Vol. 75, No. 6, p. 1636, 1992.
- [4] C.-W. Nahm, "Microstructure and electrical properties of Y₂O₃ doped ZnO-Pr₆O₁₁-based varistor", Mater. Lett., Vol. 57, No. 7, p. 1317, 2003.
- [5] C.-W. Nahm and B.-C. Shin, "Highly stable electrical properties of ZnO-Pr₆O₁₁-CoO-Cr₂O₃-Y₂O₃-based varistor cearmics", Mater. Lett., Vol. 57, No. 7, p. 1322, 2003.
- [6] C.-W. Nahm, "Microstructure and electrical properties of Dy₂O₃-based ZnO-Pr₆O₁₁-based varistor ceramics", Mater. Lett., Vol. 58, No. 17-18, p. 2252, 2004.
- [7] C.-W. Nahm and B.-C. Shin, "Effect of sintering time on electrical characteristics and DC accelerated aging behaviors of Zn-Pr-Co-Cr-Dy oxide-based

- varistors", J. Mater. Sci.: Mater. Electron., Vol. 16, No. 11-12, p. 725, 2005.
- [8] C.-W. Nahm, "Effect of sintering temperature on microstructure and electrical properties of Zn·Pr·Co·Cr·La oxide-based varistors", Mater. Lett., Vol. 60, No. 28, p. 3394, 2006.
- [9] C.-W. Nahm, "Effect of La₂O₃ addition on electrical characteristics of Pr₆O₁₁-based ZnO varistors", Trans. EEM, Vol. 7, No. 3, p. 123, 2006.
- [10] C.-W. Nahm, "Electrical properties of ZPCCT-based varistor ceramics", Trans. EEM, Vol. 8, No. 3, p. 105, 2007.
- [11] C.-W. Nahm, "Electrical properties and stability of Tb-doped ZnO-based nonlinear resistors", Solid State Commun., Vol. 141, No. 12, p. 685, 2007.
- [12] S. I. Nunes and R. C. Bradt, "Grain growth of ZnO

- in ZnO-Bi₂O₃ ceramics with Al₂O₃ additions", J. Am. Ceram. Soc., Vol. 78, p. 2469, 1995.
- [13] M.-H. Wang, K.-A. Hu, B.-Y. Ahao, and N.-F. Ahang, "Electrical characteristics and stability of low voltage ZnO varistors doped with Al", Mater. Chem. Phys., Vol. 100, p. 142, 2006.
- [14] S. Bernik and N. Daneu, "Characteristics of ZnO-based varistor ceramics doped with Al₂O₃", J. Europ. Ceram. Soc., Vol. 27, p. 3161, 2007.
- [15] J. C. Wurst and J. A. Nelson, "Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics", J. Amer. Ceram. Soc., Vol. 55, No. 97-12, p. 109, 1972.
- [16] M. Mukae, K. Tsuda, and I. Nagasawa, "Capacitance-vs-voltage characteristics of ZnO varistor", J. Appl. Phys., Vol. 50, No. 6, p. 4475, 1979.