Effect of Culture Conditions on Cathepsin B Inhibitor Production by a Marine Bacterium, Pseudomonas sp. Strain PB01

  • Published : 2008.06.30

Abstract

A novel cathepsin B inhibitor-producing bacterium was isolated from marine sediments and identified based on its 16S rDNA sequence as Pseudomonas sp. strain PB01 (Accession No. EU126129). The growth and enzyme inhibitor production were investigated under various culture conditions. A mixture of organic nitrogen source was required for the optimal production, whereas both glucose and maltose proved to be the effective carbon sources for cathepsin B inhibitor production. Other optimal culture conditions included temperature range between 25 and $28^{\circ}C$, initial medium pH of 6.6, and shaking speed of 200 rpm. Under these optimal conditions, the maximum inhibitory activity from culture broth was approximately 50% after 30 h of cultivation. Additionally, kinetic study revealed that inhibitor production paralleled with cell growth, which suggested that the inhibitor may be a primary metabolite of that bacterium.

Keywords

References

  1. Barrett, A. J., A. A. Kembhavi, M. A. Brown, H. Kirschke, C. G. Knight, M. Tamai, and K. Hanada. 1982. L-Transepoxysuccinyl- leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinase including cathepsins B, H and L. Biochem. J. 201: 189-198 https://doi.org/10.1042/bj2010189
  2. Baumann, P., R. D. Bouditch, L. Baumann, and B. Beaman. 1983. Taxonomy of marine Pseudomonas species: P. stanieri sp. nov.; P. perfectomarina sp. nov., nom. rev.; P. nautica; and P. doudoroffii. 1983. Int. J. Syst. Bacteriol. 33: 857-865 https://doi.org/10.1099/00207713-33-4-857
  3. Bennasar, A., R. Rossello-Mora, J. Lalucat, and E. R. B. Moore. 1996. 16S rDNA sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int. J. Syst. Bacteriol. 49: 200-205
  4. Bu'Lock, J. D. 1961. Intermediary metabolism and antibiotic synthesis. Adv. Appl. Microbiol. 3: 293-342 https://doi.org/10.1016/S0065-2164(08)70514-8
  5. Garden, E. L. Jr. 1959. Fermentation process kinetics. J. Biochem. Microbiol. Technol. Eng. 1: 413-420 https://doi.org/10.1002/jbmte.390010407
  6. Hanada, K., M. Tamai, M. Yamaguchi, S. Ohmura, J. Sawada, and I. Tanaka. 1978. Isolation and characterization of E-64, a new thiol protease inhibitor. Agric. Biol. Chem. 42: 523-528 https://doi.org/10.1271/bbb1961.42.523
  7. Imada, C. 2005. Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie van Leeuwenhoek 87: 59- 63 https://doi.org/10.1007/s10482-004-6544-x
  8. Jensen, P. R., T. J. Mincer, P. G. Williams, and W. Fenical. 2005. Marine Actinomyces diversity and natural product discovery. Antonie van Leeuwenhoek 87: 43-48 https://doi.org/10.1007/s10482-004-6540-1
  9. Jung, H. J. and J. K. Ho. 2006. Chemical genomics with natural products. J. Microbiol. Biotechnol. 16: 651-659
  10. Jutras, I. and T. L. Reudelhuber. 1999. Prorenin processing by cathepsin B in vitro and in transfected cells. FEBS Lett. 443: 48-52 https://doi.org/10.1016/S0014-5793(98)01672-X
  11. Khodaiyan, F., S. H. Razavi, Z. Emam-Djomeh, S. M. A. Mousavi, and M. A. Hejazi. 2007. Effect of culture conditions on canthaxanthin production by Dietzia natronolimnaea HS-1. J. Microbiol. Biotechnol. 17: 195-201
  12. Kirschke, H., A. J. Barrett, and N. D. Rawlings. 1995. Proteinases I: Lysosomal cysteine proteinases. Protein Profile 2: 587-643
  13. Maeda, K., K. Kawamura, S. Kondo, T. Aoyagi, T. Takeuti, and H. J. Umezawa. 1971. The structure and activity of leupeptins and related analogs. J. Antibiot. 24: 402-404 https://doi.org/10.7164/antibiotics.24.402
  14. Moore, E. R., B. M. Mau, A. Arnscheidt, E. C. Bottger, R. A. Hutson, M. D. Collins, Y. Van de Peer, R. de Wachter, and K. T. Timmis. 1996. The determination and comparison of the 16S rDNA gene sequence of species of the genus Pseudomonas (sensus tricto) and estimation of the natural generic relationships. Syst. Appl. Microbiol. 19: 478-492 https://doi.org/10.1016/S0723-2020(96)80021-X
  15. Mort, J. S. and D. J. Buttle. 1997. Cathepsin B. Int. J. Biochem. Cell Biol. 29: 715-720 https://doi.org/10.1016/S1357-2725(96)00152-5
  16. Neves, F. A., K. G. Duncan, and J. D. Baxter. 1996. Cathepsin B is a prorenin processing enzyme. Hypertension 27: 514- 517 https://doi.org/10.1161/01.HYP.27.3.514
  17. Palleroni, N. J. 1984. Genus I. Pseudomonas Migula, pp. 141- 199. In N. R. Krieg and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, $2^{nd}$ Ed. Williams & Wilkins, Baltimore
  18. Romanenko, L. A., M. Uchino, E. Falsen, G. M. Frolova, N. V. Zhukova, and V. V. Mikhailov. 2005. Pseudomonas pachastrellae sp. nov., isolated from a marine sponge. Int. J. Syst. Evol. Microbiol. 55: 919-924 https://doi.org/10.1099/ijs.0.63176-0
  19. Shimada, K. and K. Matsushima. 1969. A protease inhibitor from Penicillium cyclopium. Part I. Purification and partial characterization. Agric. Biol. Chem. 33: 544-548 https://doi.org/10.1271/bbb1961.33.544
  20. Shuang, J. L., C. H. Liu, S. Q. An, Y. Xing, G. Q. Zheng, and Y. F. Shen. 2006. Some universal characteristics of intertidal bacterial diversity as revealed by 16S rRNA gene-based PCR clone analysis. J. Microbiol. Biotechnol. 16: 1882-1889
  21. Skrzydlewska, E., M. Sulkowska, M. Koda, and S. Sulkowski. 2005. Proteolytic-antiproteolytic balance and its regulation in carcinogenesis. World J. Gastroenterol. 11: 1251-1266 https://doi.org/10.3748/wjg.v11.i9.1251
  22. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599 https://doi.org/10.1093/molbev/msm092
  23. Ustadi, S. G. Y. and S. M. Kim. 2006. Purification, characterization, and inhibitory activity of glassfish (Liparis tanakai) egg high molecular weight protease inhibitor against papain and cathepsin. J. Microbiol. Biotechnol. 16: 524-530
  24. Yamada, T., J. Hiratake, M. Aikawa, T. Suizu, Y. Saito, A. Kawato, K. Suginami, and T. Oda. 1998. Cysteine protease inhibitors produced by the industrial koji mold, Aspergillus oryzae O-1018. Biosci. Biotechnol. Biochem. 62: 907-914 https://doi.org/10.1271/bbb.62.907
  25. Yumoto, I., K. Yamazaki, M. Hishinuma, Y. Nodasaka, A. Suemori, K. Nakajima, N. Inoue, and K. Kawasaki. 2001. Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int. J. Syst. Evol. Microbiol. 51: 349-355 https://doi.org/10.1099/00207713-51-2-349