Expression, Purification, and Characterization of C-Terminal Amidated Glucagon in Streptomyces lividans

  • Qi, Xiaoqiang (Ministry of Health Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Jiang, Rong (Ministry of Health Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Yao, Cheng (Ministry of Health Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Zhang, Ren (Ministry of Health Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Li, Yuan (Ministry of Health Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College)
  • Published : 2008.06.30

Abstract

Glucagon, a peptide hormone produced by alpha-cells of Langerhans islets, is a physiological antagonist of insulin and stimulator of its secretion. In order to improve its bioactivity, we modified its structure at the C-terminus by amidation catalyzed by a recombinant amidase in bacterial cells. The human gene coding for glucagon-gly was PCR amplified using three overlapping primers and cloned together with a rat ${\alpha}$-amidase gene in plasmid pMGA. Both genes were expressed under control of the strong constitutive promoter of aph and secretion signal melC1 in Streptomyces lividans. With Phenyl-Sepharose 6 FF, Q-Sepharose FF, SP-Sepharose FF chromatographies and HPLC, the peptide was purified to about 93.4% purity. The molecular mass of the peptide is 3.494 kDa as analyzed by MALDI TOF, which agrees with the theoretical mass value of the C-terminal amidated glucagon. The N-terminal sequence of the peptide was also determined, confirming its identity with human glucagon at the N-terminal part. ELISA showed that the purified peptide amide is bioactive in reacting with glucagon antibodies.

Keywords

References

  1. Anne, J. and L. Van Mellaert. 1993. Streptomyces Iividans as host for heterologous protein production. FEMS Microbiol. Lett. 114: 121-128 https://doi.org/10.1111/j.1574-6968.1993.tb06561.x
  2. Ausubel, F. M. 1995. Short Protocols in Molecular Biology, 3rd Ed. John Wiley & Sons, Inc
  3. Bender, E., K. P. Koller and J. W. Engels. 1990. Secretory synthesis of human interleukin-2 by Streptomyces lividans. Gene. 86: 227-232 https://doi.org/10.1016/0378-1119(90)90283-W
  4. Binnie, C., D. Jenish, D. Cossar, A. Szabo, D. Trudeau, P. Krygsman, L. T. Malek, and D. I. H. Stewart. 1997. Expression and characterization of soluble human erythropoietin receptor made in Streptomyces lividans 66. Protein Expr. Purif. 11: 271-278 https://doi.org/10.1006/prep.1997.0787
  5. Binnie, C., J. D. Cossar, and D. I. H. Stewart. 1997. Heterologous biopharmaceutical protein expression in Streptomyces. TIBTECH 15: 315-320 https://doi.org/10.1016/S0167-7799(97)01062-7
  6. Brawner, M. E. 1994. Advances in heterologous gene expression by Streptomyces. Curr. Opin. Biotechnol. 5: 475-481 https://doi.org/10.1016/0958-1669(94)90060-4
  7. Brawner, M., G. Poste, M. Rosenberg, and J. Westpheling. 1991. Streptomyces: A host for heterologous gene expression. Curr. Opin. Biotechnol. 2: 674-681 https://doi.org/10.1016/0958-1669(91)90033-2
  8. Chiasson, J. L. and A. D. Cherrington. 1983. In: Glucagon and Liver Glucose Output in Vivo (Glucagon I, Handbook of Experimental Pharmacology), pp. 361-382. Springer-Verlag, Berlin, Germany
  9. Choi, N. S., K. H. Yoo, K. S. Yoon, K. T. Chang, P. J. Maeng, and S. H. Kim. 2005. Identification of recombinant subtilisins. J. Microbiol. Biotechnol. 15: 35-39
  10. Fornwald, J. A., M. J. Donovan, R. Gerber, J. Keller, D. P. Taylor, E. J. Arcuri, and M. E. Brawner. 1993. Soluble forms of the human T cell receptor CD4 are efficiently expressed by Streptomyces lividans. Biotechnology 11: 1031-1036 https://doi.org/10.1038/nbt0993-1031
  11. Hong, B., B. Wu, and Y. Li. 2003. Production of C-terminal amidated recombinant salmon calcitonin in Streptomyces lividans. Appl. Biochem. Biotechnol. 110: 113-123
  12. Ishizaki, J., M. Tamaki, M. Shin, H. Tsuzuki, K. Yoshikawa, H. Teraoka, and N. Yoshida. 1992. Production of recombinant human glucagon in the form of a fusion protein in Escherichia coli recovery of glucagon by sequence-specific digestion. Appl. Microbiol. Biotechnol. 36: 483-486
  13. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. Crowes, Norwich, England
  14. Kimball, C. P. and J. R. Murlin. 1923. Aqueous extracts of pancreas III. Some precipitation reactions of insulin. J. Biochem. 58: 337-346
  15. Krstenansky, J. L., D. Trivedi, D. Johnson, and V. J. Hruby. 1986. Conformational considerations in the design of a glucagon analogue with increased receptor binding and adenylate cyclase potencies. J. Am. Chem. Soc. 108: 1696-1698 https://doi.org/10.1021/ja00267a053
  16. Lichenstein, H., M. E. Brawner, L. M. Miles, C. A. Meyers, P. R. Young, P. L. Simon, and T. Eckhardt. 1988. Secretion of interleukin-1 beta and Escherichia coli galactokinase by Streptomyces lividans. J. Bacteriol. 170: 3924-3929 https://doi.org/10.1128/jb.170.9.3924-3929.1988
  17. Moody, A. J., F. Norris, and K. Norris. 1987. The secretion of glucagon by transformed yeast strains. FEBS Lett. 212: 302- 306 https://doi.org/10.1016/0014-5793(87)81365-0
  18. Na, K. H., S. C. Kim, K. S. Seo, S. H. Lee, W. B. Kim, and K. C. Lee. 2005. Purification and characterization of recombinant human follicle stimulating hormone produced by Chinese hamster ovary cells. J. Microbiol. Biotechnol. 15: 395-402
  19. Ray, M. V., P. Van Duyne, and A. H. Bertelsen. 1993. Production of recombinant salmon calcitonin by in vitro amidation of an Escherichia coli produced precursor peptide. Biotechnology (NY) 11: 64-70 https://doi.org/10.1038/nbt0193-64
  20. Roman Esipov, S., N. Vasily Stepanenko, and I. Alexandr Gurevich. 2006. Production and purification of recombinant human glucagon overexpressed as intein fusion protein in Escherichia coli. Protein Peptide Lett. 13: 343-347 https://doi.org/10.2174/092986606775974320
  21. Staub, A., L. Sinn, and O. K. Behrens. 1955. Purification and crystallization of glucagon. J. Biol. Chem. 214: 619-632
  22. Stewart, J. M., E. J. York, R. L. Baldwin, and K. R. Shoemaker. 1985. Nature of the charged-group effect on the stability of the C-peptide helix. Proc. Natl. Acad. Sci. USA 82: 2349-2353
  23. Unger, R. H. 1976. Diabetes and the alpha cell. Diabetes. 25: 136-151 https://doi.org/10.2337/diab.25.2.136
  24. Unson, C. G., D. Andreu, M. Ellen Gurzenda, and R. B. Merrifield. 1987. Synthetic peptide antagonists of glucagons. Proc. Natl. Acad. Sci. USA 84: 4083-4087
  25. Van Mellaert, L., C. Dillen, P. Proost, E. Sablon, R. DeLeys, A. Van Broekhoven, H. Heremans, J. Van Damme, H. Eyssen, and J. Anne. 1994. Efficient secretion of biologically active mouse tumor necrosis factor $\alpha$ by Streptomyces lividans. Gene 150: 153-158 https://doi.org/10.1016/0378-1119(94)90876-1
  26. White, J. W. and G. F. Saunders. 1986. Structure of the human glucagon gene. Nucleic Acids Res. 14: 4719-4730 https://doi.org/10.1093/nar/14.12.4719
  27. Wu, B.Y. and Y. Li. 2000. Studies of cloning and expression of rat $\alpha$-amidase gene in Streptomyces lividans. Chin. J. Biotechnol. 16: 574-577