Genome-Wide Identification of Haploinsufficiency in Fission Yeast

  • Baek, Seung-Tae (Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Han, Sang-Jo (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Nam, Mi-Young (Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Young-Dae (Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Li-La (Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Hyun-Jee (Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Heo, Kyung-Sun (Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Hye-Mi (Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Min-Ho (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Song-Kyu (Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Maeng, Pil-Jae (Department of Microbiology, School of Biological Science and Biotechnology, Chungnam National University) ;
  • Park, Young-Woo (Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Sung-Hou (Department of Biotechnology and Informatics, Sangmyung University)
  • Published : 2008.06.30

Abstract

Abnormal phenotypes resulting from haploinsufficiency (HI) are due to the loss of one allele. Recent studies in budding yeast have shown that HI originates from insufficient protein levels or from a stoichiometric imbalance between subunits of protein complexes. In humans, however, HI often involves transcription factors. Therefore, the species differences in HI and the molecular mechanisms of species-specific HI remain under investigation. In this study, HI in fission yeast was systematically surveyed. HI in fission yeast affected genes related to signaling and to basic cellular processes, as observed in budding yeast. These results suggest that there are species differences in HI and that the HI that occurs in fission yeast is intermediate to HI in budding yeast and humans.

Keywords

References

  1. Asenjo, J. A., P. Ramirez, I. Rapaport, J. Aracena, E. Goles, and B. A. Andrews. 2007. A discrete mathematical model applied to genetic regulation and metabolic networks. J. Microbiol. Biotechnol. 17: 496-510
  2. Chial, H. J., T. H. Giddings Jr., E. A. Siewert, M. A. Hoyt, and M. Winey. 1999. Altered dosage of the Saccharomyces cerevisiae spindle pole body duplication gene, NDC1, leads to aneuploidy and polyploidy. Proc. Natl. Acad. Sci. USA 96: 10200-10205
  3. Contamine, V. and M. Picard. 2000. Maintenance and integrity of the mitochondrial genome: A plethora of nuclear genes in the budding yeast. Microbiol. Mol. Biol. Rev. 64: 281-315 https://doi.org/10.1128/MMBR.64.2.281-315.2000
  4. Deutschbauer, A. M., D. F. Jaramillo, M. Proctor, J. Kumm, M. E. Hillenmeyer, R. W. Davis, C. Nislow, and G. Giaever. 2005. Mechanisms of haploinsufficiency revealed by genomewide profiling in yeast. Genetics 169: 1915-1925 https://doi.org/10.1534/genetics.104.036871
  5. Drubin, D. G., H. D. Jones, and K. F. Wertman. 1993. Actin structure and function: Roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidin-binding site. Mol. Biol. Cell 4: 1277-1294 https://doi.org/10.1091/mbc.4.12.1277
  6. Goss, K. H., M. A. Risinger, J. J. Kordich, M. M. Sanz, J. E. Straughen, L. E. Slovek, et al. 2002. Enhanced tumor formation in mice heterozygous for Blm mutation. Science 297: 2051-2053 https://doi.org/10.1126/science.1074340
  7. Hwang, K.-O. and J.-C. Cho. 2006. Evaluation of DNA microarray approach for identifying strain-specific genes. J. Microbiol. Biotechnol. 16: 1773-1777
  8. Jimenez-Sanchez, G., B. Childs, and D. Valle. 2001. Human disease genes. Nature 409: 853-855 https://doi.org/10.1038/35057050
  9. Judge, D. P., N. J. Biery, D. R. Keene, J. Geubtner, L. Myers, D. L. Huso, L. Y. Sakai, and H. C. Dietz. 2004. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J. Clin. Invest. 114: 172- 181 https://doi.org/10.1172/JCI200420641
  10. Jung, H. J. and H. J. Kwon. 2006. Chemical genomics with natural products. J. Microbiol. Biotechnol. 16: 651-659
  11. Kacser, H. and J. A. Burns. 1981. The molecular basis of dominance. Genetics 97: 639-666
  12. Malo, N., J. A. Hanley, S. Cerquozzi, J. Pelletier, and R. Nadon. 2006. Statistical practice in high-throughput screening data analysis. Nat. Biotechnol. 24: 167-175 https://doi.org/10.1038/nbt1186
  13. Papp, B., C. Pal, and L. D. Hurst. 2003. Dosage sensitivity and the evolution of gene families in yeast. Nature 424: 194- 197 https://doi.org/10.1038/nature01771
  14. Park, J. Y., Y. J. Jang, S. J. You, Y. S. Kil, E. J. Kang, J. H. Ahn, et al. 2003. Drug-induced haploinsufficiency of fission yeast provides a powerful tool for identification of drug targets. J. Microbiol. Biotechnol. 13: 317-320
  15. Schatz, P. J., F. Solomon, and D. Botstein. 1986. Genetically essential and nonessential alpha-tubulin genes specify functionally interchangeable proteins. Mol. Cell. Biol. 6: 3722-3733 https://doi.org/10.1128/MCB.6.11.3722
  16. Spring, K., F. Ahangari, S. P. Scott, P. Waring, D. M. Purdie, P. C. Chen, et al. 2002. Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nat. Genet. 32: 185-190 https://doi.org/10.1038/ng958
  17. Tukey, J. W. 1977. Exploratory Data Analysis. Addison-Wesley. Reading Massachusetts
  18. Veitia, R. A. 2002. Exploring the etiology of haploinsufficiency. Bioessays 24: 175-184 https://doi.org/10.1002/bies.10023
  19. Zhou, G., Y. Chen, L. Zhou, K. Thirunavukkarasu, J. Hecht, D. Chitayat, et al. 1999. CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia. Hum. Mol. Genet. 8: 2311-2316 https://doi.org/10.1093/hmg/8.12.2311