Changes in Carbohydrate, Phenolics and Polyamines of Pepper Plants under Elevated-UV-B Radiation

자외선 조사에 의한 고추 유묘의 탄수화물 합성과 항산화물질 변화

  • Sung, Jwa-Kyung (National Institute of Agriculture Science and Technology, RDA) ;
  • Lee, Su-Yeon (National Institute of Agriculture Science and Technology, RDA) ;
  • Park, Jae-Hong (Department of Agronomy, Chungbuk National University) ;
  • Lee, Sang-Min (National Institute of Agriculture Science and Technology, RDA) ;
  • Lee, Yong-Hwan (National Institute of Agriculture Science and Technology, RDA) ;
  • Choi, Du-Hoi (National Institute of Agriculture Science and Technology, RDA) ;
  • Kim, Tae-Wan (Department of Plant Resources and Science, Hankyong National University) ;
  • Song, Beom-Heon (Department of Agronomy, Chungbuk National University)
  • 성좌경 (농업과학기술원 친환경농업과) ;
  • 이수연 (농업과학기술원 친환경농업과) ;
  • 박재홍 (충북대학교 식물자원학과) ;
  • 이상민 (농업과학기술원 친환경농업과) ;
  • 이용환 (농업과학기술원 친환경농업과) ;
  • 최두회 (농업과학기술원 친환경농업과) ;
  • 김태완 (한경대학교 식물자원과학과) ;
  • 송범헌 (충북대학교 식물자원학과)
  • Received : 2007.12.22
  • Accepted : 2008.01.18
  • Published : 2008.02.28

Abstract

Pepper plants (Capsicum annuum, cv. Manitta) were subjected to different intensities of UV-B radiation to understand alterations of primary- and secondary-metabolism such as carbohydrates, phenolic compounds and polyamines. UV-B doses with a UV-B lamp ($1.2W\;m^{-2}$) were adjusted between 0 to 9 hr. The soluble sugars and starch contents in pepper leaves were highly influenced by UV-B treatment. The soluble sugars altered from $6.7mg\;g^{-1}\;fw$ to $5.2mg\;g^{-1}\;fw$ after 9 hrs of UV-B exposure. The starch contents after 3 hrs of UV-B exposure changed from $17.7mg\;g^{-1}\;fw$ to $12.3mg\;g^{-1}\;fw$ and then remained unchanged. The absorbance of UV-absorbing compounds reached initially maximum at all wavelengths read. On the basis of this result, we analyzed total phenolics, anthocyanin and simple free phenolic acids. Anthocyanin and free phenolic acids responded sensitively with a steady increase during UV-B treatment, although anthocyanin contents declined highly after 3 hrs of treatment. Whereas, there is no alteration of total phenolics (as gallic acid equivalent) caused by UV-B. Free polyamine levels in leaves increased rapidly and highly when UV-B was treated. The most prominent changes in polyamine induction were putrescine and spermidine (+ 70 %) after 3 hrs and spermine (+ 150 %) after 6 hrs.

고추 유묘기에 탄수화물 합성, 페놀화합물 및 폴리아민에 대한 자외선의 영향을 알아보기 위하여 수행하였다. 고추 유묘는 $1.2W\;m^{-2}$ 강도의 자외선 하에서 0부터 9시간까지 조사되었다. 수용성 당과 전분은 자외선 처리에 의해 크게 영향을 받았다. 수용성 당은 처리 전 ($6.7mg\;g^{-1}\;fw$)에서 자외선 9시간 처리 후에 $5.2mg\;g^{-1}\;fw$으로 약 22% 감소하였다. 전분은 자외선 처리 후 3시간 만에 30%까지 급격히 감소한 후 처리기간에 상관없이 변화가 없었다. 자외선 흡수물질에 대한 흡광도 분석을 한 결과, 처리 3시간 이후에 최고 흡광도를 나타내었으며 이를 토대로 하여 페놀화합물과 안토시아닌을 조사하였다. 흡광도 분석결과와는 다르게 안토시아닌 함량은 자외선 처리가 증가함에 따라 감소하였으며, 총 페놀화합물 함량은 자외선에 영향을 받지 않았다. 그러나 주요 단순 페놀산 함량은 크게 영향을 받았는데, cinnamic acid, ferulic acid, sinapic acid 및 syringic acid는 자외선 처리 후 2~8배 증가하였다. 식물체내 주요 항산화물질의 하나인 폴리아민도 자외선에 의해 70~15% 증가하였다. 위의 결과로 볼 때, 자외선은 식물체의 탄수화물의 합성을 억제하며, 식물체는 스트레스에 저항하기 위하여 방어물질인 페놀화합물 및 폴리아민의 합성을 촉진하였다.

Keywords

References

  1. Barsig, M., C. Gehrke and K. Schneider, 1998. Effects of UV-B radiation on fine structure, carbohydrates and pigments in Polytrichum commune. Bryologist 101: 357-365 https://doi.org/10.1639/0007-2745(1998)101[357:EOUROF]2.0.CO;2
  2. Bestford, R. D., C. M. Richardson, J. L. Campos, and A. F. Tiburcio, 1993. Effect of polyamines on stabilization complexes in thylakoid membranes of osmotically stressed oat leaves, Planta. 189 : 201-206
  3. Bornman, J. F., S. Reuber, Y. P. Cen, and G. Weissenbock, 1998. Ultraviolet radiation as a stress factor and the role of protective pigments. In: Lumsden, P.J. (Ed.), Plants and UV-B. Responses to Environmental Change. Cambridge University Press, Cambridge, pp. 157-170
  4. Bors, W., C. Langebartels, C. Michel, and H. Sandermann Jr., 1989. Polyamine as radical scavengers and protectants against ozone damage, Phytochemistry 28 : 1589-1598 https://doi.org/10.1016/S0031-9422(00)97805-1
  5. Britz, S. J. and P. Adamse, 1994. UV-B-induced increase in specific leaf weight of cucumber as a consequence of increased starch content. Photochem. Photobiol. 60 : 116-119 https://doi.org/10.1111/j.1751-1097.1994.tb05076.x
  6. Caldwell, M. M., 1971. Solar UV irradiation and the growth and development of higher plants, in: A.C. Giese (Ed.), Photophysiology, Academic Press, New York, NY, pp. 131-177
  7. Cullen, J. J. and P. J. Neale, 1994. Ultraviolet radiation, Ozone depletion and marine photosynthesis, Photosyn. Res. 39 : 303-320 https://doi.org/10.1007/BF00014589
  8. Kader, F., B. Rovel, M. Girardin, and M. Metche, 1996. Fractionation and identification of the phenolic compounds of highbush blueberries (Vaccinium corymbosum L.). Food Chem. 55 (1) : 35-40 https://doi.org/10.1016/0308-8146(95)00068-2
  9. Kotzabasis, K., 1996. A role for chloroplast-associated polyamines? Bot. Acta 109 : 5-7 https://doi.org/10.1111/j.1438-8677.1996.tb00863.x
  10. Kramer, G. F., D. T. Krizek, and R. M. Mirecki, 1992. Influence of photosynthetically active radiation and spectral quality on UV-Binduced polyamine accumulation in soybean, Phytochemistry. 31 : 1119-1125 https://doi.org/10.1016/0031-9422(92)80245-A
  11. Kroon, P. A., and G. Williamson, 1999. Hydroxycinnamates in plants and food: current and future perspectives. J. Sci. Food and Agriculture. 79 : 355-361 https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<355::AID-JSFA255>3.0.CO;2-G
  12. Landry, L. G., C. C. S. Chapple, and R. L. Last, 1995. Arabidopsis mutants lacking phenolic sunscreens exhibit enhances ultraviolet- B injury and oxidative damage, Plant Physiol. 109 : 1159-1166 https://doi.org/10.1104/pp.109.4.1159
  13. Lois, R. and B. B. Buchanan, 1994. Severe sensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation, Planta 194 : 504-509. https://doi.org/10.1007/BF00714463
  14. Meijkamp, B., R. Aerts, J. W. M. van de Staaij, M., Tosserams, W. H. O. Nature Ernst, and J. Rozema, 1999. Effects of UV-B on secondary metabolites in plants, in: J. Rozema (Ed.), Stratospheric Ozone Depletion; the Effects of UV-B Radiation on Terrestrial Ecosystems, Backhuys, Leiden, pp. 70-99
  15. Mirecki, R. M., and A. H. Teramura, 1984. Effects of ultraviolet-B irradiance on soybean V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol. 74, 475-480 https://doi.org/10.1104/pp.74.3.475
  16. Navakoudis, E., C. Lutz, C. Langebartels, U. Lutz-Meindl, and K. Kotzabasis, 2003. Ozone impact on the photosynthetic apparatus and the protective role of polyamines, Biochim. Biophys. Acta. 1621 : 160-169 https://doi.org/10.1016/S0304-4165(03)00056-4
  17. Redmond, J. W. and A. Tseng, 1979. High pressure liquid chromatographic determination of putrescine, cadaverine, spermidine and spermine. J. Chromatogr. 170 : 479-481 https://doi.org/10.1016/S0021-9673(00)95481-5
  18. Rice-Evans, C. A., N. J. Miller, and G. Paganga, 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science. 2 : 152-159 https://doi.org/10.1016/S1360-1385(97)01018-2
  19. Roe, J. H., 1955. The determination of sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem. 212 : 335-343
  20. Rozema, J., L. O. Bjorn, J. F. Bornman, A. Gaberscik, D. P. Hader, T. Trost, M. Germ, M. Klisch, A. Groniger, R. P. Sinha, M. Lebert, Y. Y. He, R. Buffoni-Hall, N. V. J. de Bakker, J. van de Staaij, and B. B. Meijkamp, 2002. The role of UV-B radiation in aquatic and terrestrial ecosystems e an experimental and functional analysis of the evolution of UV-absorbing compound. Journal of Photochemistry and Photobiology B: Biology 6 : 2-12
  21. Santos, I., J. M. Almeida, and R. Salema, 1993. Plants of Zea mays L. developed under enhanced UV-B radiation. J. Plant Physiol. 141 : 450-456 https://doi.org/10.1016/S0176-1617(11)80193-8
  22. Sfichi, L., N. Ioannidis, and K. Kotzabasis, 2004. Thylakoidassociated polyamines adjust the UV-B sensitivity of the photosynthetic apparatus by means of light-harvesting complex II changes, Photochem. Photobiol. 80 : 499-506 https://doi.org/10.1562/0031-8655(2004)080<0499:TPATUS>2.0.CO;2
  23. Strid, A., W. S. Chow, and J. M. Anderson, 1994. UV-B damage and protection at the molecular level in plants, Photosyn. Res. 39 : 475-489 https://doi.org/10.1007/BF00014600
  24. Sung, J. K., S. Y. Lee, S. H. Park, C. B. Jang, S. M. Lee, Y. H. Lee, D. H. Choi and B. H. Song, 2005. UV-B-induced changes in carbohydrate content and antioxidant activity in rice seedling. Korean J. Crop Sci. 50 : 84-90
  25. Teramura, A. H. and J. H. Sullivan, 1994. Effects of UV-B radiation on photosynthesis and growth of terrestrial plants, Photosynth. Res. 39 : 463-473 https://doi.org/10.1007/BF00014599
  26. Wrolstad, R. E., 1976. Color and pigment analyses in fruit products. Oregon Agric. Expt. Station Bulletin 624, Corvallis, OR
  27. Yue, M., Y. Li and X. Wang, 1998. Effects of enhanced ultraviolet- B radiation on plant nutrients and decomposition of spring wheat under field conditions. Environmental and Experimental Botany 40 : 187-196 https://doi.org/10.1016/S0098-8472(98)00036-7