DOI QR코드

DOI QR Code

A Study on Generative Characteristics of Radicals in Aqueous Solutions of Humic Acids using Electron Spin Resonance

전자기공명기법을 이용한 Humic Acid 용액에서의 라디칼 발생 특성에 관한 연구

  • Han, Sang-Kuk (Department of Marine Environmental Engineering, Faculty of Ocean System Engineering, Mokpo National University)
  • 한상국 (목포해양대학교 해양시스템공학부 해양환경공학)
  • Published : 2008.06.30

Abstract

We studied to determine quantitatively the radical species generated from humic acid (HA) solutions by irradiation(>400 mn). The formation of radical species from HA solutions was investigated with ESR spectroscopy. We gave ESR spectrum with g-value 2.0048 and line width 0.559mT, coincided with those of the semiquinone radical. 0.1 mg/L HA solution generated the radicals of $1.2{\times}10^{-6}M$, increased with increasing HA concentration. Also, pH and ionic strength effect of the amount of the semiquinone radical generate from HA solution. In this study, we have found that the singlet oxygen affects the semiquinone radicals generation in HA solution.

Keywords

References

  1. 유명진, 김용환, 한인섭, 김현철, 2004, 다양한 생성지로부터 분리된 휴믹물질의 물리․화학적 및 구조적 특성에 따른 활성탄 흡착특성의 평가, 대한환경공학회지, 26(9), 1031-1037
  2. Hoigne J., Faust B. C., Haag W. R., Scully F. E. J., Zepp R. G., 1989, Aquatic humic substances as sources and sinks of photochemically produced transient reactants. In: Suffet I.H., MacCarthy P.(Eds.), Aquatic Humic Substances: Influence on Fate and Treatment of Pollutants, Am. Chem. Soc., Washington DC, pp. 363-381
  3. Powell H. K. J., Fenton E., 1997, Size fractionation of humic substances: Effect on protonation and metal binding properties, Anal. Chim. Acta, 334, 27-28 https://doi.org/10.1016/S0003-2670(96)00324-8
  4. Baalousha M., Motelica-Heino M., Coustumer P. L., 2006, Congormation and size of humic substances: Effects of major cation concentration and type, pH, salinity, and residence time, Colloids and Surfaces, 272, 48-55 https://doi.org/10.1016/j.colsurfa.2005.07.010
  5. Wang Y., Combe C., Clark M. M., 2001, The effects of pH and calcium on the diffusion coefficient of humic acid, J. Membr. Sci., 183(1), 49-60 https://doi.org/10.1016/S0376-7388(00)00555-X
  6. Riggle J., Wandruszka R. V., 2002, Conductometric characterization of dissolved humic materials, Talanta, 57(3), 519-526 https://doi.org/10.1016/S0039-9140(02)00052-8
  7. Warwick P. W., Hall A., Pasnley V., Bryan N. D., Griffin D., 2000, Modelling the effect of humic substances on the transport of europium thyough porous media: a comparison of equilibrium and equilibrium/kinetic models, J. Contam. Hydrol., 42(1), 19-34 https://doi.org/10.1016/S0169-7722(99)00084-4
  8. Polewski K., Slawinska D., Slawinski J., 2002, The role of ortho-and para-semiquinones in the chemiluminescence and antioxidizing activity of humus substances. In: Stanley P.E., Kricka L.J.(Eds.), Bioluminescence & Chemiluminescence. World Scientific, New Jersey, 161-164
  9. Polewski K., Slawinska D., Slawinski J., Pawlak A., 2005, The effect of UV and visible light radiation on natural humic acid EPR spectral and kinetic studies, Geoderma, 126, 291-299 https://doi.org/10.1016/j.geoderma.2004.10.001
  10. Steelink C., Tollin G., 1966, Biological polymers related to catechol: electron paramagnetic resonance and infrared studies of melanin, tannin, lignin, humic acid and hydroxyquinones, Biochim. Biophys. Acta 112, 337-343
  11. Senesi N., Schnitzer M., 1977, Effects of pH, reaction time, chemical reduction and irradiation on ESR spectra of fulvic acid, Soil Sci., 123, 224-234 https://doi.org/10.1097/00010694-197704000-00003
  12. Palmer N. E., Von Wandruszka R., 1999, Characterization of humic acid size fractions by SEC and MALS, Organic Geochemistry, 30(4), 229-235 https://doi.org/10.1016/S0146-6380(98)00217-4
  13. Slawinska D., Slawinski J., Sarna T., 1975a,. Effect of light on EPR spectra of humic acids, J. Soil Sci., 26, 93-99 https://doi.org/10.1111/j.1365-2389.1975.tb01934.x
  14. Slawinska D., Slawinski J., Sarna T., 1975b, Photoinduced luminescence and ESR signals of polyphenols andquinonepolymers, photochem. Photobiol., 21, 393-396 https://doi.org/10.1111/j.1751-1097.1975.tb06694.x
  15. Slawinski J., Puzyna W., Slawinska D., 1978a, Chemiluminescence during photooxidation of melanins and soil humic acids arising from a singlet oxygen mechanism, Photochem. Photobiol., 28, 459-463 https://doi.org/10.1111/j.1751-1097.1978.tb06948.x
  16. Senesi N., 1990, Application of ESR spectroscopy in soil chemistry, Stewart, B.A. Adv. Soil Sci. Springer Verlag, Heidelberg, 77-130
  17. Cooper W. I., Zika R. G., Petasne R. G., Fischer A. M., 1989, Sunlight-induced photochemistry of humic substances in natural waters: major reactive species, In: Suffet I.H., MacCarthy P.(Eds.), Aquatic humic substances: Influence on fate and treatment of pollutants, Am. Chem. Soc., Washington DC, 333-362
  18. Canonica S., Hoigne J., 1995, Enhanced oxidation of methoxy phenols at micromolar concentration photosensitized by dissolved organic material, Chemosphere, 30, 2365-2374 https://doi.org/10.1016/0045-6535(95)00108-K
  19. Aguer J. P., Richard C., 1996, Reactive species produced on irradiation at 365nm of aqueous solutions of humic acids, J. Photochem. Photobiol., A Chem., 93, 193-198 https://doi.org/10.1016/1010-6030(95)04183-4
  20. Skurlatov Y. I., Ernestova L. S., Vichutinskaya E. V., Samsonov D. P., Semenova I. V., Rod'ko I. Y., Shvidky V. O., Pervunina R. I., Kemp T. J., 1997, Photochemical transformation of polychlorinated phenols, J. Photochem. Photobiol. A: Chemistry, 107, 207-213 https://doi.org/10.1016/S1010-6030(97)00011-7
  21. Nico P. S., Anastasio C.,. Zasoski R. J., 2002, Rapid photo-oxidation of Mn(II) mediated by humic substances, Geochimica et Cosmochimica Acta, 66(23), 4047-4056 https://doi.org/10.1016/S0016-7037(02)01001-3