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ABSTRACT

Multiple-input multiple-output (MIMO) is an efficient technology to increase data rate in wireless networks due to bandwidth and power
limitations. Data transmission rate between transmitter and receiver is determined by channel capacity. MIMO has an advantage of reliable
communication over wireless channel because of utilizing the channel capacity properly. In this letter, we drive a new formula, closed form
capacity formula, using confluent hypergeometric function.
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MIMO systems, channel capacity

I. INTRODUCTION fulfill such a demand, multiple transmitting and receiving

antennas namely, multiple-input multiple-output (MIMO)

Demand for capacity in wireless communications have systems have been introduced. The MIMO systems has

been rapidly increasing worldwide, and as a solution to replaced the single-input single-output (SISO) systems
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mainly because the multiple antennas at the transmitter and
the receiver can increase data rate and improve quality of
service through diversity. Channel capacity is used to
determine the consistent information transmission. The
standard formula for the Shannon channel capacity is
expressed in bps/Hz [1]

c=log:(14p/H ) b

where, [1:°, denotes the normalized channel power
transfer characteristic. To achieve higher data rate research
has been done based on this formula. The unequal number
of antennas at both the transmitter and receiver increase the
capacity logarithmically whereas the equal number of
antennas increases the capacity linearly for any fixed
signal-to-noise ratio [1] [2]. Multi-element array can
effectively comprehend a MIMO wireless channel.
Considering the performance of the two situations, the
capacity of single user multi-element arrays systems can be
explored as follows.

Firstly, the channel is known to the transmitter, thus the
power allocation is the finest; secondly, the channel is totally
unknown to the transmitter. So, equal power is allocated for
each transmitting antenna [3].

In this letter using the confluent hypergeometric function
we have introduced an analytical formula for the channel
capacity of MIMO wireless systems. In section II we have
describe the MIMO system model. In section III proposed
channel capacity formula has derived, followed by
simulation result. Finally, section IV concludes the paper.

. SYSTEM MODEL

We consider a single point-to-point MIMO system
where the number of transmit antennas are expressed as
and the number of receive antennas as .. We also assume
that n = max{n., %, ) and m = min{n,. n,}. The transmitted
signals in each symbol period are represented by an =, x 1
vectors s, whose ™ entry, s;, will be transmitted from

antenna i. We consider the total transmitied power over a

symbol period to P, not considering the number of transmit
antennas #:. It is assumed that the covariance matrix of s,

R., = e{ss™} satisfies the criterion of

where Tr {. } denotes the trace of a matrix.

Under the assumption that the channel is frequency-flat
fading, the input-output relation over a symbol period is
given by

r=Hs+w - {3}

where,
e 1 isthe ™ * 1 receive vector

e H is the " X %echannel matrix whose entries are
considered the corresponding path gain between the

transmit and receive antennas.

® W represents the additive noise at ™+ receive antennas.

The transmitter completely has no knowledge of the
channel but the receiver has perfect knowledge of the

channel and the transmit power from each antenna is F/72,.
The overall channel capacity can be determined by using
Shannon capacity formula [4]

¥ . K
C=w log,(1+2) &
P=1

where o is the noise power, W is the bandwidth of each

sub-channel and . is the received signal power in the ith
sub-channel. It is given by

AP .
Fo=—— (3]
s

where + 4 is the singular value of the channel matrix H.

Thus the channel capacity can be written as [4]

P
=#io - det (E _— £ B

when the transmitted signal vector s is circularly

symmetric complex Gaussian with zero-mean and
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covariance (P/7:}1x_and then the capacity is given by [2]
€ = 2flog, det {1 b Qj} 7
Y08z L il £ n, gE ;

where the random matrix Q is the Wishart matrix defined
as

HHT 7,
Q_-:{ . = T (8

H*, nozmn

Again in [2], the capacity of the channel with =,
transmitters and " receivers under power constraint P is

expressed as

=1 togil +—1 7
‘o & e /A k+n—mht

x LB e Ad A )

where L! is the associated Laguerre polynomials defined
as [5]

9 'y Z@dﬂ{e '&‘xﬁ-?-ﬂ}

k —_ . -,
Lilx}= pr - {10}
Also in [5], the connection between Laguerre

polynomials and confluent hypergeometric function of the
first kind is given by
Tig+b+1)

E _ a4l g1

Li{x )= TG0 1Fi{—a: b+ L:x) (11}

where the hypergeometric function has a hypergeometric
series given by

1F1asbiz) = 14— ala +1) 27
& ty z*&(&%i)

@) @F
&)y Kk

+

(12)

where {a); and (b} are Pochhammer symbols. If & and
b are integers, @ < 0, and either & > 0 or & < a, then the
series yields a polynomial with a finite number of terms, i.e.
it turns to a closed form.
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. DERIVED FORMULA FOR CAPACITY

We drive the formula for the channel capacity. The
Laguerre polynomial is defined as [6]

. Tla+5+1) {zk‘)?
05 L Z( ~ 2=

2%q!

1
*Th+k+ 1)

L3 (2x) (13}

where T'(.) is the gamma function.

According to (13), the Laguerre polynomial of (9) can be

expressed as

. Tlk+n—-—m+ 1} A — T {2%?:}
LE™OI = X Z( k é‘

1
X LEF—Z’W r-’ . 4-
Tn—m+i+07% G {14]

Expressing Li#~*™{2%} in terms of (11), we get

T2n—2m+ 2L+ 1}
(2ImTrPn —3m + 1)
X TF1{—20:2n — 2m + 1: 20) (153

LEp¥m (20 =

According to (12)the hypergeometric function
1F1(=2{:2n-2m + 1, will be

1F1(=20:2n - 2m + 1: 24}
- {—Eg;‘ {E;@j

Y —— {16}
f.:ﬁ(fim -2+t F
Replacing (16) into (15), we get
Janmim(ay) = T E}En —2m + 2+ i}
B (203730 — 2m + 1}
N (~20); W
% {17y

f’=§?- (E‘;,m — 2+ E}if ff

Substituting (17) into (14), we get
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o £ N f{k-ﬁ-?&—-m,{—}} 2;{_*;1:
L0 = ——— Z Z

1 Ti2n —2m + 21+ 1)
Xﬂn —m+i+D UTO2n—-2m 4 1)
(Em BT z}; f

(18)

Considering the relation T ¢} = {n — 1)!, and substituting
(18) into (9) we get the associated channel capacity that can
be expressed as

m~-1 8

= log. (e} Z ZZ (zk .

B=0 (=0 f=p
1 @n —2m + 2} (=20

{n —m-ﬁ- 3t 2n —2mil Om-21+ Z}f

P
X T f? f In(1 -}—"} T gmig (19}

For computing the integral of the above equation, we use
the result of appendix B of [5]

a =012 ..

Ti—
—(m— 1) Z Cm +). o) 20)

ﬁ}

I fa) = ){ Infl + y) 2™ g% gy,

=

where the complementary incomplete gamma function is
defined in [6] as

T{a.z} = j' R (21}

Computing the integral of (19), according to (20)

n-me el _:
I=bh—m+ i (‘ 3 {
n-mef+1 { + f L4 }a’Pj}
M—n+m—f— i 1 fP) |
J - .22:*:
X ; n /Py (22)

In [7], the relation between the exponential integral of

order 71 and the complementary incomplete gamma function
is defined as

E,(x) = x*'T(1 - p,x) (23

By employing (23) to (22), we get

n—m+f

I=(—m+fHg™® Z E s(n/P) {24}

Inserting (24) into (19), and also applying the condition
of (12),we get the following equation:

wm-1 X i

-—g?’r””ggg {gﬁzzzi?i:?{

F=0 i=l f=D
m—m+fi 2a-2m+200 (20
% — i -
n-m+0D @n-2mMl @m-20+1)

n-ma+f

2.; : Z Eip1ine /) (253

Figure 1 shows simulation result of the derived capacity.
Simulation is done for the different number of antennas in
both transmitter and receiver side. Simulation result shows
that the capacity increased logarithmically because of
unequal number of antennas are deployed in both the

transmitter and receiver.
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Fig. 1. Analytical channel capacity versus average
signal to noise ratio. The legend denotes the number
of transmit and receive antennas.

IV. CONCLUSION

In this paper, a closed form channel capacity formula has
been derived using confluent hypergeometric function.
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Simulation was performed to get analytical channel capacity
versus average signal to noise ratio. The derived capacity
formula allows us to calculate the channel capacity in a
closed form. Consequently, the derived formula can be
applied for calculating the channel capacity of practical
MIMO system where large numbers of antennas are used to
transmit and receive data through wireless media.
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