연속 최근접 이웃(CNN) 탐색의 성능향상을 위한 탐색구간 제한기법

A Search Interval Limitation Technique for Improved Search Performance of CNN

  • 한석 (한미 연합군 사령부 군수참모부 군수준비태세처) ;
  • 오덕신 (삼육대학 경영정보학과) ;
  • 김종완 (삼육대학 경영정보학과)
  • 발행 : 2008.06.30

초록

위치기반 서비스(LBS, Location Based Services)에 대한 관심이 증가함에 따라 사용자가 이동 중에도 질의를 통한 최근접 이웃(NN, Nearest Neighbor) 탐색에 대한 필요성이 증가하였다. 이와 같은 동적환경에서의 최근접 이웃 탐색은 탐색 구간에 대해 NN탐색기법을 반복 적용하여 수행해 왔으나 이는 불필요한 중복연산이 발생하여 탐색 비용이 증가하는 단점이 있다. 본 논문에서는 이동 중에도 탐색 구간에 대해 연속적인 최근접 이웃(CNN, Continuous Nearest Neighbor)을 탐색하는 새로운 기법인 Slabbed_CNN을 제안한다. Slabbed_CNN은 슬랩을 이용하여 탐색 구간을 줄임으로써 기존 CNN기법의 탐색영역과 계산비용을 감소시킴으로써 기존 CNN보다 연산비용을 감소시키고 빠른 서비스를 제공한다.

With growing interest in location-based service (LBS), there is increasing necessity for nearest neighbor (NN) search through query while the user is moving. NN search in such a dynamic environment has been performed through the repeated applicaton of the NN method to the search segment, but this increases search cost because of unnecessary redundant calculation. We propose slabbed continuous nearest neighbor (Slabbed_CNN) search, which is a new method that searches CNN in the search segment while moving, Slabbed_CNN reduces calculation costs and provides faster services than existing CNN by reducing the search area and calculation cost of the existing CNN method through reducing the search segment using slabs.

키워드