DOI QR코드

DOI QR Code

북동아시아 해역에서 인공위성 관측에 의한 해수면온도의 오차 특성

Error Characteristics of Satellite-observed Sea Surface Temperatures in the Northeast Asian Sea

  • 박경애 (서울대학교 지구과학교육과/해양연구소) ;
  • ;
  • Park, Kyung-Ae (Department of Earth Science Education/Research Institute of Oceanography Seoul National University) ;
  • Sakaida, Futoki (Center for Atmospheric and Oceanic Studies, Tohoku University) ;
  • Kawamura, Hiroshi (Center for Atmospheric and Oceanic Studies, Tohoku University)
  • 발행 : 2008.06.30

초록

북동아시아 해역에서 10년 동안 관측된 광범위한 해양관측 자료와 인공위성 자료를 이용하여 인공위성이 관측한 해수면온도의 정확도를 평가하고 오차(인공위성 해수면온도-실측수온)의 특성을 조사하였다. 845개의 일치점 자료를 분석한 결과 위성 해수면온도 (MCSST)는 해양 관측치에 대해 0.89$^{\circ}C$의 제곱평균오차와 0.18$^{\circ}C$의 편차를 보였다. 위성 수온의 오차는 40$^{\circ}N$에서 $\pm3^{\circ}C$에 달하는 위도에 따른 의존성을 보였는데 이는 고위도 해역에 존재하는 작은 소용돌이, 해류, 열전선의 큰 시공간적 변동성과 관련 있는 것으로 판단된다. 많은 수의 위성 해수면온도 자료는 겨울철에 해양관측치보다 낮게 산출되고 여름철에는 높게 산출되는 경향이 있었다. 이러한 계절적 의존성은 인공위성 표층부이 자료가 아닌 해양조사선과 계류부이의 수온자료에서 발견되었는데 해양 상층의 수 m 이내에 강한 수직적 수온 구배가 있음을 보여준다. 본 연구는 인공위성 자료로부터 해수면온도를 산출할 때 해양 피층과 그 아래 층 사이의 수온 차이를 고려하고 보정하려는 노력이 필요함을 강조한다.

An extensive set of both in-situ and satellite data regarding oceanic sea surface temperatures in Northeast Asian seas, collected over a 10-year period, was collocated and surveyed to assess the accuracy of satellite-observed sea surface temperatures (SST) and investigate the characteristics of satellite measured SST errors. This was done by subtracting insitu SST measurements from multi-channel SST (MCSST) measurements. 845 pieces of collocated data revealed that MCSST measurements had a root-mean-square error of about 0.89$^{\circ}C$ and a bias error of about 0.18$^{\circ}C$. The SST errors revealed a large latitudinal dependency with a range of $\pm3^{\circ}C$ around 40$^{\circ}N$, which was related to high spatial and temporal variability from smaller eddies, oceanic currents, and thermal fronts at higher latitudes. The MCSST measurements tended to be underestimated in winter and overestimated in summer when compared to in-situ measurements. This seasonal dependency was discovered from shipboard and moored buoy measurements, not satellite-tracked surface drifters, and revealed the existence of a strong vertical temperature gradient within a few meters of the upper ocean. This study emphasizes the need for an effort to consider and correct the significant skin-bulk SST difference which arises when calculating SST from satellite data.

키워드

참고문헌

  1. Barton, I., 1995, Satellite-derived sea surface temperature: Current status. Journal of Geophysical Research, 100, 8777-8790 https://doi.org/10.1029/95JC00365
  2. Donlon, C.J., Nightingale, T.J., Sheasby, T., Turner, J., Robinson, I.S., and Emery, W.J., 1999, Implications of the oceanic thermal skin temperature deviation at high wind speed. Geophysical Research Letters, 26, 2505-2508 https://doi.org/10.1029/1999GL900547
  3. McClain, E.P., Pichel, W.G., and Walton, C.C., 1985, Comparative performance of AVHRR-based multichannel sea surface temperature. Journal of Geophysical Research, 90, 3655-3661
  4. McMillin, L.M., 1975, Esimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of Geophysical Research, 80, 5113-5117 https://doi.org/10.1029/JC080i036p05113
  5. Park, K.A., Chung, J.Y., Kim, K., Choi, B.H., and Lee, D.K., 1999, Sea surface temperature retrievals optimized to the East Sea (Sea of Japan) using NOAA/ AVHRR data. Marine Technology Society Journal, 33, 23-35 https://doi.org/10.4031/MTSJ.33.1.4
  6. Park, K.A., Ullman, D.S., Kim, K., Chung, J.Y., and Kim, K.R., 2007, Spatial and temporal variability of Satelliteobserved Subpolar Front in the East (Japan) Sea. Deep Sea Research (Part I), 54, 453-470 https://doi.org/10.1016/j.dsr.2006.12.010
  7. Prabakahara, C., Dalu, G., and Kunde, V.G., 1974, Estimation of sea surface temperature from remote sensing in the 11-13 $\mu$m window region. Journal of Geophysical Research, 79, 5039-5044 https://doi.org/10.1029/JC079i033p05039
  8. Strong, A.E. and McClain, E.P., 1984, Improved ocean surface temperatures from space comparisons with drifting buoys. Bulletin of the American Meteorological Society, 65, 138-142 https://doi.org/10.1175/1520-0477(1984)065<0138:IOSTFS>2.0.CO;2
  9. Vazquez, J., Tran, A., Sumagaysay, R., Smith, E.A., and Hamilton, M., 1995, NOAA/NASA AVHRR Oceans Pathfinder Sea Surface Temperature Data Set User's Guide Version 1.2. Jet Propulsion Laboratory Technical Report, 53 p
  10. Walton, C.C., 1988, Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data. Journal of Applied Meteorology, 27, 115-124 https://doi.org/10.1175/1520-0450(1988)027<0115:NMAFES>2.0.CO;2
  11. Walton, C.C., Pichel, W.G., Sapper, J.F., and May, D.A., 1998, The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with NOAA polar-orbiting environment satellites. Journal of Geophysical Research, 103, C12, 27999-28012 https://doi.org/10.1029/98JC02370
  12. Wentz, F.J., Gentemann, C., Smith, D., and Chelton, D., 2000, Satellite measurements of sea surface temperature through clouds. Science, 288, 847-850 https://doi.org/10.1126/science.288.5467.847
  13. Yashayaev, I.M. and Zveryaev, I.I., 2001, Climate of the seasonal cycle in the North Pacific and the North Atlantic. International Journal of Climatology, 21, 401- 417 https://doi.org/10.1002/joc.585

피인용 문헌

  1. Implications of sea surface temperature deviations in the prediction of wind and precipitable water over the Yellow Sea vol.116, pp.D17, 2011, https://doi.org/10.1029/2011JD016191
  2. A Study of the Effects of SST Deviations on Heavy Snowfall over the Yellow Sea vol.23, pp.2, 2013, https://doi.org/10.14191/Atmos.2013.23.2.161
  3. Calculation of Surface Heat Flux in the Southeastern Yellow Sea Using Ocean Buoy Data vol.19, pp.3, 2014, https://doi.org/10.7850/jkso.2014.19.3.169
  4. Long-term comparison of satellite and in-situ sea surface temperatures around the Korean Peninsula vol.50, pp.1, 2015, https://doi.org/10.1007/s12601-015-0009-1
  5. Study on the temporal and spatial variation in cold water zone in the East Sea using satellite data vol.32, pp.6, 2016, https://doi.org/10.7780/kjrs.2016.32.6.14