DOI QR코드

DOI QR Code

STRESS DISTRIBUTION OF THREE NITI ROTARY FILES UNDER BENDING AND TORSIONAL CONDITIONS USING 3-DIMENSIONAL FINITE ELEMENT ANALYSIS

세가지 니켈 티타늄 파일의 휨과 비틀림 조건에서의 응력 분포에 관한 3차원 유한요소 연구

  • Kim, Tae-Oh (Department of Conservative Dentistry, School of Dentistry, Pusan National University) ;
  • Lee, Chan-Joo (Division of Precision Manufacturing Systems, Pusan National University) ;
  • Kim, Byung-Min (Division of Precision Manufacturing Systems, Pusan National University) ;
  • Park, Jeong-Kil (Department of Conservative Dentistry, School of Dentistry, Pusan National University) ;
  • Hur, Bock (Department of Conservative Dentistry, School of Dentistry, Pusan National University) ;
  • Kim, Hyeon-Cheol (Department of Conservative Dentistry, School of Dentistry, Pusan National University)
  • 김태오 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 이찬주 (부산대학교 공과대학 기계공학부) ;
  • 김병민 (부산대학교 공과대학 기계공학부) ;
  • 박정길 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 허복 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 김현철 (부산대학교 치의학전문대학원 치과보존학교실)
  • Published : 2008.07.31

Abstract

Flexibility and fracture properties determine the performance of NiTi rotary instruments. The purpose of this study was to evaluate how geometrical differences between three NiTi instruments affect the deformation and stress distributions under bending and torsional conditions using finite element analysis. Three NiTi files (ProFile .06 / #30, F3 of ProTaper and ProTaper Universal) were scanned using a Micro-CT. The obtained structural geometries were meshed with linear, eight-noded hexahedral elements. The mechanical behavior (deformation and von Mises equivalent stress) of the three endodontic instruments were analyzed under four bending and rotational conditions using ABAQUS finite element analysis software. The nonlinear mechanical behavior of the NiTi was taken into account. The U-shaped cross sectional geometry of ProFile showed the highest flexibility of the three file models. The ProTaper, which has a convex triangular cross-section, was the most stiff file model. For the same deflection, the ProTaper required more force to reach the same deflection as the other models, and needed more torque than other models for the same amount of rotation. The highest von Mises stress value was found at the groove area in the cross-section of the ProTaper Universal. Under torsion, all files showed highest stresses at their groove area. The ProFile showed highest von Mises stress value under the same torsional moment while the ProTaper Universal showed the highest value under same rotational angle.

이 연구의 목적은 세가지 니켈-티타늄 파일의 휨과 회전 조건 하에서의 응력 분포를 유한요소 모형을 이용하여 비교하는 것이다. ProFile .06/#30, ProTaper와 ProTaper Universal의 F3파일을 마이크로컴퓨터 단층촬영을 하고 reverse engineering을 통하여 세 니켈 티타늄 파일의 구조를 얻고 삼차원 유한요소모형을 제작하였다. 니켈 티타늄 합금의 비선형적인 물리적 성질을 반영하고 ABAQUS 프로그램을 이용하여 휨과 회전 조건 하에서의 기계적인 움직임을 수학적으로 예측 분석하였다. U-형태의 단면 구조를 가진 ProFile이 모형 가운데 가장 좋은 휨 성질을 나타냈다. 동일한 휨량 조건에서는 볼록한 삼각형 단면의 ProTaper가 다른 모형보다 많은 힘을 필요로 하였으며, 반면에 가장 높은 von Mises 응력은 ProTaper Universal의 단면에서 움푹 파인 부위에 집중되었다. ProFile 모형은 동일한 크기의 회전력 에 대해 가장 큰 응력 집중을 U-형 구 부위에 나타냈다. ProTaper 모형은 다른 모형에 비해 동일량을 비틀기 위해 더 많은 힘을 필요로 하였으며, 반면에, 동량의 비틀림에서는 가장 높은 von Mises 응력이 ProTaper Universal의 단면에서 움푹 파인 부위에 집중되었다.

Keywords

References

  1. Walia H, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod 14:346-351, 1988 https://doi.org/10.1016/S0099-2399(88)80196-1
  2. Glosson CR, Haller RH, Dove SB, del Rio CE. A comparison of root canal preparations using Ni-Ti hand, Ni-Ti engine-driven, and K-Flex endodontic instruments. J Endod 21:146-151, 1995 https://doi.org/10.1016/S0099-2399(06)80441-3
  3. Schafer E, Schulz-Bongert U, Tulus G. Comparison of hand stainless steel and nickel titanium rotary instrumentation: a clinical study. J Endod 30:432-435, 2004 https://doi.org/10.1097/00004770-200406000-00014
  4. Chen JL, Messer HH. A comparison of stainless steel hand and rotary nickel-titanium instrumentation using a silicone impression technique. Aust Dent J 47:12-20, 2002 https://doi.org/10.1111/j.1834-7819.2002.tb00297.x
  5. Garip Y, Gunday M. The use of computed tomography when comparing nickel-titanium and stainless steel files during preparation of simulated curved canals. Int Endod J 34:452-457, 2001 https://doi.org/10.1046/j.1365-2591.2001.00416.x
  6. Schafe E. Shaping ability of Hero 642 rotary nickeltitanium instruments and stainless steel hand KFlexofiles in simulated curved root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92:215-220, 2001 https://doi.org/10.1067/moe.2001.114622
  7. Hata G, Uemura M, Kato AS, Imura N, Novo NF, Toda T. A comparison of shaping ability using ProFile, GT file, and Flex-R endodontic instruments in simulated canals. J Endod 28:316-321, 2002 https://doi.org/10.1097/00004770-200204000-00014
  8. Ankrum MT, Hartwell GR, Trutt JE. K3 Endo, ProTaper, and ProFile systems: breakage and distortion in severely curved root of molars. J Endod 30:234-237, 2004 https://doi.org/10.1097/00004770-200404000-00013
  9. Kim HC, Park JK, Hur B. Relative efficacy of three Ni- Ti file systems used by undergraduates. J Kor Acad Cons Dent 30:38-48, 2005 https://doi.org/10.5395/JKACD.2005.30.1.038
  10. Walsch H. The hybrid concept of nickel-titanium rotary instrumentation. Dent Clin North Am 48:183-202, 2004 https://doi.org/10.1016/j.cden.2003.11.003
  11. Park SH, Cho KM, Kim JW. The Efficiency of the Ni- Ti Rotary files in Curved Simulated Canals Shaped by Novice Operators. J Kor Acad Cons Dent 28:146-155, 2003 https://doi.org/10.5395/JKACD.2003.28.2.146
  12. Bergmans L, Van Cleynenbreugel J, Beullens M, Wevers M, Van Meerbeek B, Lambrechts P. Progressive versus constant tapered shaft design using NiTi rotary instruments. Int Endod J 36:288-295, 2003 https://doi.org/10.1046/j.1365-2591.2003.00650.x
  13. Clauder T, Baumann MA. ProTaper NT system. Dent Clin North Am 48:87-111, 2004 https://doi.org/10.1016/j.cden.2003.10.006
  14. Calberson FL, Deroose CA, Hommez GM, De Moor RJ. Shaping ability of ProTaper nickel-titanium files in simulated resin root canals. Int Endod J 37:613-623, 2004 https://doi.org/10.1111/j.1365-2591.2004.00860.x
  15. Yun HH, Kim SK. A comparison of the shaping abilities of 4 nickel-titanium rotary instruments in simulated root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95:228-233, 2003 https://doi.org/10.1067/moe.2003.92
  16. Schafe E, Vlassis M. Comparative investigation of two rotary nickel-titanium instruments: ProTaper versus RaCe. Part 1. Shaping ability in simulated curved canals. Int Endod J 37:229-238, 2004 https://doi.org/10.1111/j.0143-2885.2004.00786.x
  17. Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and threedimensional analysis of instruments from two nickeltitanium rotary systems. Int Endod J 39:755-763, 2006 https://doi.org/10.1111/j.1365-2591.2006.01143.x
  18. Martin B, Zelada G, Varela P, Bahillo JG, Magan F, Ahn S, Rodriguez C. Factors influencing the fracture of nickel-titanium rotary instruments. Int Endod J 36:262-266, 2003 https://doi.org/10.1046/j.1365-2591.2003.00630.x
  19. Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod 26:161-165, 2000 https://doi.org/10.1097/00004770-200003000-00008
  20. Berutti E, Chiandussi G, Gaviglio I, Ibba A. Comparative analysis of torsional and bending stresses in two mathematical models of nickel-titanium rotary instruments: ProTaper versus ProFile. J Endod 29:15-19, 2003 https://doi.org/10.1097/00004770-200301000-00005
  21. Camps JJ, Pertot WJ, Levallois B. Relationship between file size and stiffness of nickel titanium instruments. Endod Dent Traumatol 11:270-273, 1995 https://doi.org/10.1111/j.1600-9657.1995.tb00502.x
  22. Wang GZ. A finite element analysis of evolution of stress-strain and martensite transformation in front of a notch in shape memory alloy NiTi. Mater Sci Eng A 460-461:383-391, 2007 https://doi.org/10.1016/j.msea.2007.01.154
  23. Tripi TR, Bonaccorso A, Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:e106-114, 2006 https://doi.org/10.1016/j.tripleo.2005.12.012
  24. Best S, Watson P, Pilliar R., Kulkarni GGK, Yared G. Torsional fatigue and endurance limit of a size 30.06 ProFile rotary instrument. Int Endod J 37:370-373, 2004 https://doi.org/10.1111/j.1365-2591.2004.00814.x
  25. Plotino G, Grande NM, Sorci E, Malagnino VA, Somma F. Influence of a brushing working motion on the fatigue life of NiTi rotary instruments. Int Endod J 40:45-51, 2007 https://doi.org/10.1111/j.1365-2591.2006.01179.x
  26. Hubscher W, Barbakow F, Peters OA. Root canal preparation with FlexMaster: assessment of torque and force in relation to canal anatomy. Int Endod J 36:883-890, 2003 https://doi.org/10.1111/j.1365-2591.2003.00742.x
  27. Peters OA, Peters CI, Schonenberger K, Barbakow F. ProTaper rotary root canal preparation: assessment of torque and force in relation to canal anatomy. Int Endod J 36:93-99, 2003 https://doi.org/10.1046/j.1365-2591.2003.00628.x
  28. Boessler C, Peters OA, Zehnder M. Impact of lubricant parameters on rotary instrument torque and force. J Endod 33:280-283, 2007 https://doi.org/10.1016/j.joen.2006.11.007
  29. Shen Y, Bian Z, Cheung GS, Peng B. Analysis of defects in ProTaper hand-operated instruments after clinical use. J Endod 33:287-290, 2007 https://doi.org/10.1016/j.joen.2006.09.009
  30. Lopes HP, Moreira EJ, Elias CN, de Almeida RA, Neves MS. Cyclic fatigue of ProTaper instruments. J Endod 33:55-57, 2007 https://doi.org/10.1016/j.joen.2006.09.003
  31. Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod 32:55-57, 2006 https://doi.org/10.1016/j.joen.2005.10.013
  32. Ullmann CJ, Peters OA. Effect of cyclic fatigue on static fracture loads in ProTaper nickel-titanium rotary instruments. J Endod 31:183-186, 2005 https://doi.org/10.1097/01.don.0000137641.87125.8f
  33. Cheung GS, Peng B, Bian Z, Shen Y, Darvell BW. Defects in ProTaper S1 instruments after clinical use: fractographic examination. Int Endod J 38:802-809, 2005 https://doi.org/10.1111/j.1365-2591.2005.01020.x
  34. Turpin YL, Chagneau F, Vulcain JM. Impact of two theoretical cross-sections on torsional and bending stresses of nickel-titanium root canal instrument models. J Endod 26:414-417, 2000 https://doi.org/10.1097/00004770-200007000-00009
  35. Xu X, Eng M, Zheng Y, Eng D. Comparative study of torsional and bending properties for six models of nickel- titanium root canal instruments with different crosssections. J Endod 32:372-375, 2006 https://doi.org/10.1016/j.joen.2005.08.012
  36. Timoshenko SP, Goodier JN. Theory of Elasticity. McGraw-Hill, 1970
  37. Schafer E, Dzepina A, Danesh G. Bending properties of rotary nickel-titanium instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 96:757-763, 2003 https://doi.org/10.1016/S1079-2104(03)00358-5
  38. Haikel Y, Serfaty R, Bateman G, Senger B, Allemann C. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod 25:434-440, 1999 https://doi.org/10.1016/S0099-2399(99)80274-X
  39. Yared GM, Bou Dagher FE, Machtou P. Cyclic fatigue of ProFile rotary instruments after clinical use. Int Endod J 33:204-207, 2000 https://doi.org/10.1046/j.1365-2591.1999.00296.x
  40. Shen Y, Cheung GS, Bian Z, Peng B. Comparison of defects in ProFile and ProTaper systems after clinical use. J Endod 32:61-65, 2006 https://doi.org/10.1016/j.joen.2005.10.017
  41. Mandel E, Adib-Yazdi M, Benhamou LM, Lachkar T, Mesgouez C, Sobel M. Rotary Ni-Ti profile systems for preparing curved canals in resin blocks: influence of operator on instrument breakage. Int Endod J 32:436-443, 1999 https://doi.org/10.1046/j.1365-2591.1999.00239.x
  42. Yared GM, Bou Dagher FE, Machtou P. Influence of rotational speed, torque and operator's proficiency on ProFile failures. Int Endod J 34:47-53, 2001 https://doi.org/10.1046/j.1365-2591.2001.00352.x

Cited by

  1. Effect of internal stress on cyclic fatigue failure in .06 taper ProFile vol.37, pp.2, 2012, https://doi.org/10.5395/rde.2012.37.2.79