DOI QR코드

DOI QR Code

Antimicrobial Activities of Alkyl Gallates Alone and in Combination with Antibiotics Against the Fish Pathogenic Bacteria Edwardsiella tarda and Vibrio anguillarum

알킬갈레이트 유도체의 어병세균 Edwardsiella tarda와 Vibrio anguillarum에 대한 항균활성 및 항생제와의 병용효과

  • Kang, So-Young (Division of Food Science and Aqualife Medicine, Chonnam National University) ;
  • Kang, Ji-Young (Division of Food Science and Aqualife Medicine, Chonnam National University) ;
  • Kim, Su-Yeon (Division of Food Science and Aqualife Medicine, Chonnam National University) ;
  • Kim, Do-Hyung (Division of Food Science and Aqualife Medicine, Chonnam National University) ;
  • Oh, Myung-Joo (Division of Food Science and Aqualife Medicine, Chonnam National University)
  • 강소영 (전남대학교 식품.수산생명의학부) ;
  • 강지영 (전남대학교 식품.수산생명의학부) ;
  • 김수연 (전남대학교 식품.수산생명의학부) ;
  • 김도형 (전남대학교 식품.수산생명의학부) ;
  • 오명주 (전남대학교 식품.수산생명의학부)
  • Published : 2008.06.30

Abstract

Methyl gallate isolated from bark of the tree Rhus verniciflua Stokes has significant antimicrobial activity against the fish pathogenic bacteria Edwardsiella tarda and Vibrio anguillarum. To evaluate the antimicrobial activity of gallate derivatives, eight alkyl gallates were tested. Ethyl gallate and propyl gallate had the highest activities, with MICs of $15.6-31.3{\mu}g/mL$ against E. tarda. For V. anguillarum, propyl gallate and butyl gallate were highly effective, with MICs of $7.81-31.3{\mu}g/mL$. When used in combination with antibiotics, methyl gallate exhibited synergistic effects with oxytetracycline against E. tarda and with norfloxacin against V. anguillarum. These results suggest that short-chain alkyl gallates can be used as alternatives to antibiotics against the fish pathogenic bacteria.

Keywords

References

  1. Ahn, Y.J., C.O. Lee, J.H. Kwon, J.W. Ahn and J.H. Park. 1998. Growth-inhibitory effects of Galla rhois- derived tannins on intestinal bacteria. J. Appl. Microbiol., 84, 439-443 https://doi.org/10.1046/j.1365-2672.1998.00363.x
  2. Cowan, M.M. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 12, 564-582
  3. Defoirdt, T., N. Boon, P. Sorgeloos, W. Verstraete and P. Bossier. 2007. Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aqua-culture as an example. Trend. Biotechnol., 25, 472- 479 https://doi.org/10.1016/j.tibtech.2007.08.001
  4. Kang, S.Y. 2005. The antimicrobial compound of Rhus verniciflua barks against fish pathogenic gram-negative bacteria, Edwardsiella tarda and Vibrio anguillarum. J. Fish Pathol., 18, 227-237
  5. Kubo, I., K.I. Fujita and K.I. Nihei. 2002. Anti-Salmonella activity of alkyl gallates. J. Agric. Food Chem., 50, 6692-6696 https://doi.org/10.1021/jf020467o
  6. Kubo, I., K.I. Fujita, K.I. Nihei and N. Masuoka. 2003. Non-antibiotic antibacterial activity of dodecyl gallate. Bioorg. Med. Chem., 11, 573-580 https://doi.org/10.1016/S0968-0896(02)00436-4
  7. Kumagai, H., Y. Kawai, R. Sawano, H. Kurihara, K. Yamazaki and N. Inoue. 2005. Antimicrobial substances from rhizomes of the giant knotweed Polygonum sachalinense against the fish pathogen Photobacterium damselae subsp. piscicida. Z. Naturforch., 60C, 39-44
  8. Langfield, R.D., F.J. Scarano and M.E. Heitzman. 2004. Use of a modified microplate bioassay method to investigate antibacterial activity in the Perunian medicinal plant Peperomia galioides. J. Ethnopharmacol., 94, 279-281. https://doi.org/10.1016/j.jep.2004.06.013
  9. Pillai, S.K., R.C. Moellering and G.M. Eliopoulos. 2005. Antimicrobial combinations. In: Antibiotics in Laboratory Medicine. Lorian, V., ed. Lippincott Williams & Wilkins, PA, USA, 365-440
  10. Saxena, G., A.R. McCutcheon, S. Farmer, G.H.N. Towers and R.E.W. Hancock. 1994. Antimicrobial constituents of Rhus glabra. J. Ethnopharmacol., 42, 95-99 https://doi.org/10.1016/0378-8741(94)90102-3
  11. Shibata, H., K. Kondo, R. Katsuyama, K. Kawazoe, Y. Sato, K. Murakami, Y. Takaishi, N. Arakaki and T. Higuti. 2005. Alkyl gallates, intensifiers of $\beta$-lactam susceptibility in methicillin-resistant Staphylococcus aureus. Antimicrob. Agent. Chemother., VOL, 549- 555
  12. Stapleton, P.D., S. Shah, J.C. Anderson, Y. Hara, J.M.T. Hamilton-Miller and P.W. Taylor. 2004. Modulation of $\beta$-lactam resistance in Staphylococcus aureus by catechins and gallates. Int. J. Antimicrob. Agent., 23, 462-467 https://doi.org/10.1016/j.ijantimicag.2003.09.027
  13. White, R.L., D.S. Burgess, M. Manduru and J.A. Bosso. 1996. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob. Agent. Chemother., 40, 1914-1918

Cited by

  1. In vitro Anti-bacterial and Anti-scuticociliate Activities of Extract and Bromophenols of the Marine Red Alga Polysiphonia morrowii with Structure-activity Relationships vol.47, pp.1, 2014, https://doi.org/10.5657/KFAS.2014.0045
  2. and their soluble epoxide hydrolase inhibitory activity pp.1478-6427, 2018, https://doi.org/10.1080/14786419.2018.1478825