DOI QR코드

DOI QR Code

Validation of QuikSCAT Wind with Resolution of 12.5 km in the Vicinity of Korean Peninsula

한반도 연안에서의 12.5 km 해상도 QuikSCAT 해상풍 검증

  • 정진용 (한국해양연구원 연안개발연구본부) ;
  • 심재설 (한국해양연구원 연안개발연구본부) ;
  • 이동규 (부산대학교 해양연구소) ;
  • 민인기 (한국해양연구원 연안개발연구본부) ;
  • 권재일 (한국해양연구원 연안개발연구본부)
  • Published : 2008.03.30

Abstract

Several validation studies have been made for QuikSCAT(QSCAT) wind data around the world, mainly in the offshore. However, until now, there were no validation studies for QSCAT wind with resolution of 12.5 km ('QSCAT 12.5 km wind') in the vicinity of Korean Peninsula. To validate 'QSCAT 12.5 km wind' and to investigate its characteristics around Korean Peninsula, the wind data from Ieodo Ocean Research Station, KMA buoys, and KORDI Realtime Observation Stations have been compared. Validation results showed that 'QSCAT 12.5 km wind' RMSE of wind direction and speed were $25.85^{\circ}$ and 1.83 m/s, respectively, at Ieodo Station. The mean wind speed correlation coefficient of KMA buoys and KORDI Realtime Observation Station were 0.78 and 0.61, and the mean wind speed RMSE were 2.2 m/s and 3.2 m/s, respectively. This seems to be mainly because of the distance between QSCAT and in-situ observation stations. The RMSE of wind direction were bigger than $40^{\circ}$ at all in-situ observation stations located near the shore, within 20 km from coastlines. Geophysical features where in-situ observation stations are located seem to affect wind validation scores.

Keywords

References

  1. 기상청. 2006. 해양기상변화 탐지기술개발(IV). 기상연구소, MR053M16 2002M-004-00. 484 p
  2. 김지민, 허동수, 김창훈, 김도삼. 2007. 지형을 고려한 해상풍 모델(MASCON)과 SWAN 모델의 결합에 의한 천해파랑 산정. 한국해안.해양공학회지, 19(1), 57-65
  3. 소방방재청. 2006. 재해사전예방 강화 및 투자확대 방안. 363 p
  4. 오현미, 하경자. 2005. 2003-2004년도 이어도 기지 해상 기상 특성 분석. 한국기상학회지, 41(5), 671-680
  5. 유승협, 조재갑, 서장원. 2007. 기상청 현업 모델 RDAPS와 QuikSCAT 해상풍 자료의 비교. 한국해안.해양공학회지, 19(5), 467-475
  6. 하경자, 허기영, 오현미, 심재설. 2007. 이어도 해양과학기지 관측 자료의 기상학적 활용성. 제1회 이어도연구(회) 발표 논문집, p. 79-84
  7. 해양수산부. 2006. 해양관측 및 예보시스템 - 제1부 해양관측 시스템 개발. 한국해양연구원, BSPM 3780-1880-1. 197 p
  8. De Rooy, W. and K. Kok. 2004. A combined physicalstatistical approach for the downscaling of model wind speed. Weather Forecast., 19(3), 485-495 https://doi.org/10.1175/1520-0434(2004)019<0485:ACPAFT>2.0.CO;2
  9. Ebuchi, N., H.C. Graber, and M.J. Caruso. 2002. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Ocean. Tech., 19(12), 2049-2062 https://doi.org/10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2
  10. Masuko, H., K. Arai, N. Ebuchi, M. Konda, M. Kubota, K. Kutsuwada, T. Manabe, A. Mukaida, T. Nakazawa, A. Nomura, A. Shibata, and Y. Tahara. 2000. Evaluation of Vector Winds Observed by NSCAT in the Seas around Japan. J. Oceanogr., 56, 495-505 https://doi.org/10.1023/A:1011192725800
  11. NASA Missions - SeaWinds on QuikSCAT. Available from WWW: [cited 2007-9-10]
  12. Rufenach, C. 1998. Comparison of Four ERS-1 Scatterometer wind retrieval algorithm with buoy measurements. J. Atmos. Ocean Tech., 15(1), 304-313 https://doi.org/10.1175/1520-0426(1998)015<0304:COFESW>2.0.CO;2

Cited by

  1. Application of a Large Ocean Observation Buoy in the Middle Area of the Yellow Sea vol.31, pp.4, 2009, https://doi.org/10.4217/OPR.2009.31.4.401
  2. Validation of Sea Surface Wind Speeds from Satellite Altimeters and Relation to Sea State Bias vol.39, pp.2, 2018, https://doi.org/10.5467/JKESS.2018.39.2.139