화장품에서 금 콜로이드 입자에 의한 사프라닌 염료의 분해 연구

Photodegradation of Safranin-O Dye by Au Metal Colloid in Cosmetics

  • 한문숙 (한양대학교 화학공학과) ;
  • 이용근 (한양대학교 화학공학과) ;
  • 이영호 (한양대학교 화학공학과) ;
  • 김대욱 (한양대학교 화학공학과) ;
  • 오성근 (한양대학교 화학공학과)
  • Han, Moon-Suk (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Yong-Geun (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Young-Ho (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Dae-Wook (Department of Chemical Engineering, Hanyang University) ;
  • Oh, Seong-Geun (Department of Chemical Engineering, Hanyang University)
  • 발행 : 2008.06.30

초록

본 연구에서는 금 나노입자 콜로이드를 이용하여 safranin-O의 광촉매적 분해를 관찰하였다. 금 나노입자는 용액상에서 safranin-O의 분해 속도를 빠르게 하기 위해서 사용되었다. 금 나노입자 콜로이드는 수용액상에서 $Na_2CO_3$와 PVP 고분자(poly(vinyl pyrrolidone))를 이용하는 환원방법에 의하여 제조하였다. Safranin-O의 분해현상은 자외선(UV light)와 과산화수소($H_2O_2$)의 존재 하에서 금 나노입자 콜로이드와 염화금의 농도, 반응계의 산도(pH), 반응시간과 같은 실험조건들의 조절을 통해 연구되었다. 분해반응에 사용된 금 나노입자 콜로이드의 농도가 증가함에 따라서 염료가 분해되는 속도가 증가하였다. Safranin-O의 광산화 반응은 광학적으로 측정되었고, 금 나노입자의 기본적인 물성과 촉매 특성은 UV-Vis 광학계를 이용하여 측정되었다.

In this study, the photocatalysed degradation of safranin-O was investigated using Au colloids. Au metal nanoparticle wasused to eliminate safranin-O fast in solution. Au nanoparticles were prepared reduction method using $Na_2CO_3$ and PVP in aqueous solution. The degradation of safranin-O was examined using a variety of condition such as concentration of Au colloid or Au salt, reaction pH, and reaction time in the presence of UV light and $H_2O_2$. As the concentration of Au colloid increases, the rate of dye degradation increases. The photo-oxidation of the safranin-O was monitored spectrophotometrically. The properties of Au nanoparticles were characterized by UV-Vis spectroscopy. In addition, catalytic capacities of Au nanoparticles were also determined by UV-Vis spectroscopy.

키워드

참고문헌

  1. F. H. Abdullah, M. A. Rauf, and S. S. Ashraf, Photolytic oxidation of safranin-O with $H_2O_2$, Dyes and Pigments, 72, 349 (2007) https://doi.org/10.1016/j.dyepig.2005.09.015
  2. O. Legrini, E. Oliveros, and A. M. Braun, Photochemical processes for water treatment, Chem. Rev., 93, 671 (1993) https://doi.org/10.1021/cr00018a003
  3. T. Robinson, G. McMullan, R. Marchant, and P. Nigam, Remediation of dyes in textile effluent; a critical review on current treatment technologies with a proposed alternative, Bioresour, 77(3), 247 (2001) https://doi.org/10.1016/S0960-8524(00)00080-8
  4. W. P. Halperin, Quantum size effects in metal particles, Reviews of Modern Physics, 58(3), 533 (1986) https://doi.org/10.1103/RevModPhys.58.533
  5. A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters, J. Phys. Chem. B, 104, 564 (2004) https://doi.org/10.1021/jp991889c
  6. P. V. Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles, J. Phys. Chem. B, 106, 7729 (2002) https://doi.org/10.1021/jp0209289
  7. M. A. Rauf, S. Ashraf, and S. N. Alhadrami, Photolytic oxidation of Coomassie brilliant blue with $H_2O_2$, Dyes and Pigments, 66, 197 (2005) https://doi.org/10.1016/j.dyepig.2004.09.006
  8. D. Li and H. Haneda, Morphologies of zinc oxide particles and their effects on photocatalysis, Chemosphere, 51, 129 (2003) https://doi.org/10.1016/S0045-6535(02)00787-7
  9. G. C. Bond and D. T. Thomson, Catalysis by gold, Catal. Rev. Sci. Eng., 41(3) (1999)
  10. M. Haruta and M. Date, Advances in the catalysis of Au nanoparticles, Appl. Catal. A, 222, 427 (2001) https://doi.org/10.1016/S0926-860X(01)00847-X
  11. F. Bonet, C. Guery, D. Guyomard, R. Herrera-Urbina, K. Tekaia-Elhsissen, and J. M. Tarascon, Electrochemical reduction of noble metal compounds in ethylene glycol, Int. Inorg. Mater., 1, 47 (1999) https://doi.org/10.1016/S1463-0176(99)00007-1
  12. P. Y. Silvert, R. H. Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen, Preparation of colloidal silver dispersions by the polyol process. Part 1-synthesis and characterization, J. Mater. Chem., 6(4), 573 (1996) https://doi.org/10.1039/jm9960600573
  13. N. Toshima, Fine particles: synthesis, characterization, and mechanisms of growth, ed. T. Sugimoto, Dekker, New York, 92, 430 (2000)
  14. P. Mahata, T. Aarthi, G. Madrad, and S. Natarajan, Photocatalytic degradation of dyes and organics with nanosized $GdC_oO_3$, J. Phys. Chem. C, 111, 1665 (2007) https://doi.org/10.1021/jp066302q
  15. S. S. Ashraf, M. A. Rauf, and A. Alhadrami, Degradation of methyl red using Fenton's reagent and the effect of various salts, Dyes and Pigments, 69, 74 (2006) https://doi.org/10.1016/j.dyepig.2005.02.009
  16. H. Y. Shu and C. R. Huang, Ultraviolet enhanced oxidation for color removal of azo dye wastewater, American Dyestuff Reporter, 84, 30 (1995)
  17. N. Chandrasekharan, P. V. Kamat, J. Hu, and G. Jones II, Dye-capped gold nanoclusters: photoinduced morphological changes in gold/rhodamine 6G nanoassemblies, J. Phys. Chem. B, 104, 11103 (2000) https://doi.org/10.1021/jp002171w
  18. A. Maezawa, H. Nakadoi, K. Suzuki, T. Furusawa, Y. Suzuki, and S. Uchida, Treatment of dye wastewater by using photo-catalytic oxidation with sonication, Ultrasonics Sonochemistry, 14, 615 (2007) https://doi.org/10.1016/j.ultsonch.2006.11.002
  19. J. Stieglitz, A theory of color production I, Proceedings of the national academy of sciences, 9(9), 303 (1923)
  20. Z. Csepregi, P. Aranyosi, I. Rusznak, L. Toke, J. Frankl, and A. Vg, The light stability of azo dyes and azo dyeings I, Dyes and pigments, 37, 14 (1998)