Inhibitory effects of Enterococcus faecium isolated from Korean infants on oral pathogens

한국 영아로부터 분리한 Enterococcus faecium의 구강 병원균에 대한 억제 효과

  • Jeong, Eun-Gyeong (Department of Periodontology, School of Dentistry, Wonkwang University) ;
  • Lee, Jong-Cheol (Department of Periodontology, School of Dentistry, Wonkwang University) ;
  • Seo, Jung-Yoon (Department of Periodontology, School of Dentistry, Wonkwang University) ;
  • Kim, Seong-Yoon (Department of Periodontology, School of Dentistry, Wonkwang University) ;
  • Kim, Wan-Su (Department of Periodontology, School of Dentistry, Wonkwang University) ;
  • Yun, Woo-Hyuk (Department of Periodontology, School of Dentistry, Wonkwang University) ;
  • Kim, Yun-Sang (Department of Periodontology, School of Dentistry, Wonkwang University) ;
  • Pi, Sung-Hee (Department of Periodontology, School of Dentistry, Wonkwang University) ;
  • You, Hyung-Keun (Department of Periodontology, School of Dentistry, Wonkwang University) ;
  • Shin, Hyung-Shik (Department of Periodontology, School of Dentistry, Wonkwang University)
  • 정은경 (원광대학교 치과대학 치주과학교실) ;
  • 이종철 (원광대학교 치과대학 치주과학교실) ;
  • 서정윤 (원광대학교 치과대학 치주과학교실) ;
  • 김성윤 (원광대학교 치과대학 치주과학교실) ;
  • 김완수 (원광대학교 치과대학 치주과학교실) ;
  • 윤우혁 (원광대학교 치과대학 치주과학교실) ;
  • 김윤상 (원광대학교 치과대학 치주과학교실) ;
  • 피성희 (원광대학교 치과대학 치주과학교실) ;
  • 유형근 (원광대학교 치과대학 치주과학교실) ;
  • 신형식 (원광대학교 치과대학 치주과학교실)
  • Published : 2008.03.31

Abstract

Purpose: The probiotic effects of lactic acid bacteria have widely been researched in diverse human pathogens, but only a few effects are reported against oral pathogens. The antimicrobial effects of the Enterococcus faecium 7413 isolated from Korean infants on the 9 pathogen including 6 oral streptococci were investigated the clinical use of the antimicrobial peptide for oral microflora control. Materials and Methods: E. faecium 7413 was identified by morphological, biochemical tests and 16S rDNA sequence analysis. Inhibitory effects of culture supernatants were determined for their ability to grow on agar plate containing pathogenic bacteria. Result: The culture supernatant of Enterococcus faecium 7413 showed inhibitory effects on oral pathogens, namely Streptococcus pyogenes KCTC 3556, S. pneumoniae KCTC 5080, S. mutans ATCC 25175, S. anginosus ATCC 33397, S. constellatus KCTC 3268, S. intermedius ATCC 27823 and Shigella flexneri KCTC 2008. Whereas it did not affect the multiplication of E. coli strains, KCTC 1041 and ATCC 43894. Conclusion: The data obtained in this study could be useful for future development of effective probiotics allowing prevention for oral pathogens.

Keywords

References

  1. Williams RC, Offenbacher S. Periodontal medicine: the emergence of a new branch of periodontology. Periodontol 2000;23:9-12 https://doi.org/10.1034/j.1600-0757.2000.2230101.x
  2. Beck JD, Offenbacher S. The association between periodontal diseases and cardiovascular diseases: a state-of-the science review. Ann Periodontol 2001;6:9-15 https://doi.org/10.1902/annals.2001.6.1.9
  3. Guandalini S. Probiotics for children: use in diarrhea. J Clin Gastroenterol 2006;40:244-248 https://doi.org/10.1097/00004836-200603000-00016
  4. Madsen K. Probiotics and the immune response. J Clin Gastroenterol 2006;40:232-234 https://doi.org/10.1097/00004836-200603000-00014
  5. Shaw L. Effects of probiotics on atopic dermatitis. Arch Dis Child 2006;91:373 https://doi.org/10.1136/adc.2005.090951
  6. Parker RB. Probiotics, the other half of the antibiotic story. Ani Nutr Health 1974;29:4-8
  7. Ruoff KL. Recent taxonomic changes in the genus Enterococcus. Eur J Clin Microbiol Infect Dis 1990;9(2): 75-79 https://doi.org/10.1007/BF01963630
  8. Shinzato T, Saito, A. The Streptococcus milleri group as a cause of pulmonary infections. Clin Infect Dis 1995;21: 238-243 https://doi.org/10.1093/clinids/21.1.238
  9. Shiga K, Tateda M, Saijo S et al. Takasaka T, Miyagi T. Presence of Streptococcus infection in extraoropharyngeal head and neck squamous cell carcinoma and its implication in carcinogenesis. Oncol Rep 2001;8:245-248
  10. Tateda M, Shiga K, Saijo S et al. Streptococcus anginosus in head and neck squamous cell carcinoma: implication in carcinogenesis. Int J Mol Med 2000;6:699-703
  11. Whatmore AM, Efstratiou A, Pickerill AP et al. Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: characterization of 'Atypical' pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect Immun 2000;68(3):1374-1382 https://doi.org/10.1128/IAI.68.3.1374-1382.2000
  12. Caglar E, Sandalli N, Twetman S, et al. Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults. Acta Odontol Scand 2005;63317-63320
  13. Zhou JS, Rutherfurd KJ, Gill HS. Inability of probiotic bacterial strains Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019 to induce human platelet aggregation in vitro. J Food Prot 2005; 68:2459-2464 https://doi.org/10.4315/0362-028X-68.11.2459
  14. Stackebrandt E, Goebel BM. A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994;44:846-849 https://doi.org/10.1099/00207713-44-4-846
  15. Thompson JD, Gibson TJ, Plewniak F et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acid Res 1997;24:4876-4882
  16. Schillinger U, Lucke FK. Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 1989;55:1901-1906
  17. Konisky J. Colicins and other bacteriocins with established modes of action. Annu Rev Microbiol 1982;36:125-144 https://doi.org/10.1146/annurev.mi.36.100182.001013
  18. Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria. Bacteriol Rev 1976;40:722-756
  19. Lee HO, Lee KH, Park NK et al. Antibacterial Effects of Sophora flavescens on Streptococcus mutans. The Korean Journal of Food And Nutrition 2000;13:539-546
  20. Chung J, Ha ES, Park HR, Kim S. Isolation and characterization of Lactobacillus species inhibiting the formation of Streptococcus mutans biofilm. Oral Microbiol Immunol 2004;19:214-216 https://doi.org/10.1111/j.0902-0055.2004.00137.x
  21. Meurman JH. Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 2005;113:188-196 https://doi.org/10.1111/j.1600-0722.2005.00191.x
  22. Kohler B, Bjarnason S. Mutans streptococci, lactobacilli and caries prevalence in 11- and 12-year-old Icelandic children. Community Dent Oral Epidemiol 1987;15:332- 335 https://doi.org/10.1111/j.1600-0528.1987.tb01747.x
  23. Aguilera Galaviz LA, Premoli G, Gonzalez A, Rodriguez RA. Caries risk in children: determined by levels of mutans streptococci and Lactobacillus. J Clin Pediatr Dent 2005; 29:329-333 https://doi.org/10.17796/jcpd.29.4.16156896xt539001
  24. Audisio MC, Oliver G, Apella MC. Effect of different complex carbon sources on growth and bacteriocin synthesis of Enterococcus faecium. Int J Food Microbiol 2001;63:235-241 https://doi.org/10.1016/S0168-1605(00)00429-3
  25. Benyacoub J, Perez PF, Rochat F et al. Enterococcus faecium SF68 enhances the immune response to Giardia intestinalis in mice. J Nutr 2005;135:1171-1176 https://doi.org/10.1093/jn/135.5.1171
  26. Joerger MC, Klaenhammer TR. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 1986;167:439-446 https://doi.org/10.1128/jb.167.2.439-446.1986
  27. Lund B, Edlund C, Barkholt L et al. Impact on human intestinal microflora of an Enterococcus faecium probiotic and vancomycin. Scand J Infect Dis 2000;32:627-632 https://doi.org/10.1080/003655400459531
  28. Lund B, Adamsson I, Edlund C. Gastrointestinal transit survival of an Enterococcus faecium probiotic strain administered with or without vancomycin. Int J Food Microbiol 2002;77:109-115 https://doi.org/10.1016/S0168-1605(02)00047-8