Molt-related Changes in the Granulocytes of the Spider Araneus ventricosus (Araneae: Arachnida)

탈피에 따른 산왕거미(Araneus ventricosus) 과립혈구의 미세구조 변화

  • Moon, Myung-Jin (Department of Biological Sciences & Institute of Basic Science, Dankook University)
  • 문명진 (단국대학교 첨단과학대학 생명과학과)
  • Published : 2008.06.30

Abstract

The fine structural modification of the granulocytes between the molt and intermolt period were investigated by the transmission electron microscopy. The granular hemocytes of the spider Araneus ventricosus were composed of three subtypes: eosinophilic granulocytes (EGs), basophilic granulocytes (BGs) and cyanocytes. Both of the EGs and BGs have electron dense granules within their cytoplasms, however the granules of BGs are larger than those of EGs. During the molt period, some of the EGs have fine structural modification in their cell organelles including formation of phagosomes as a result of active phagocytosis. However, the BGs have no phagosomes, but electron densities of the granules are changed to lower states than the intermolt period. The cyanocyte is the biggest hemocyte among the granulocytes. They contain numerous hemocyanin crystals in the cytoplasm with some electron-lucent vacuoles. During the molt period, some of the cyanocytes are changed to irregular shapes. High magnification electron micrographs reveal that the lattice sub-structure of the hemocyanin crystals are very similar to those of microtubules, and each tubule is composed of approximately 20 filaments with fine fibrillar structure.

탈피에 따른 거미 과립혈구의 미세구조 변화를 고배율의 투과 전자현미경으로 관찰하였다. 산왕거미(Araneus ventricosus)의 과립혈구는 산호성 과립혈구(EGs)와 염기호성 과립혈구(BGs), 그리고 혈색소혈구 (cyanocytes) 등 세 종류가 구분되었다. EGs와 BGs는 공통적으로 전자밀도가 높은 구형 과립을 함유하고 있었지만, 과립의 크기와 미세구조의 차이에 따라 두 종류가 확연히 구분되었다. 과립의 크기가 작은 EGs는 탈피기간중 세포소기관의 다양한 형태적 변화가 나타나며, 왕성한 식작용을 통해 많은 식포를 형성하는 것으로 관찰되었다. 반면, 과립의 크기가 큰 BGs의 세포질에서는 식포가 관찰되지 않았으나, 탈피시기 동안 과립의 전자밀도가 낮아지는 특성이 관찰되었다. 가장 대형의 과립혈구인 혈색소세포의 세포질에는 많은 헤모시아닌 결정체가 동심원상으로 배열되어 있었으며, 탈피기간중 혈구의 일부는 불규칙한 구조로 변형되었다. 고배율의 투과전자현미경으로 헤모시아닌 결정체의 격자구조를 관찰한 결과, 미세소관(microtubule)과 매우 유사한 구조를 가지고 있었으며, 각각의 미세한 관상 구조는 다시 약 20여 가닥의 극히 미세한 필라멘트로 이루어져 있음이 확인되었다.

Keywords

References

  1. Arnold JW: Larval hemocytes in Noctuidae (Insecta: Lepidoptera). Inter J Insect Morphol Embryol 11 : 173-188, 1982 https://doi.org/10.1016/S0020-7322(82)80003-2
  2. Ashhurst DE: Histochemical properties of the spherulocytes of Galleria Mellonella (L.) (Lepidoptera: Pyralidae). Inter J Insect Morphol Embryol 101 : 285-292, 1982
  3. Beeman SC, Wilson ME, Bulla LA, Consigli RA: Structural characterization of the hemocytes of Plodia interpunctella. J Morphol 179 : 1-16, 1983 https://doi.org/10.1002/jmor.1051790102
  4. Brehelin M, Zachary D, Hoffmann JA: A comparative ultrastructural study of blood cells from nine insect orders. Cell Tiss Res 195 : 45-57, 1978
  5. Browning HC: The integument and moult cycle of Tegenaria atrica (Araneae). Proc Roy Soc London B 131 : 65-86, 1942
  6. Chain BM, Anderson RS: Observations on the cytochemistry of the hemocytes of an insect, Galleria mellonella. J Histochem Cytochem 31 : 601-607, 1982
  7. Chang BS, Yoe SM: Electron microscopic study on the hemocytes of the wolf spider, Pardosa astrigera. Korean J Electron Microscopy 25 : 29-38, 1995
  8. Chang BS, Yoe SM, Kim WK, Moon MJ: Electron microscopic study on the hemocytic immune responses to the foreign substances in insects. (I) Response to gold particles. Korean J Zool 35 : 58-69, 1992
  9. Chase SF: Characterization of the hemolymph of the spider Araneus cavaticus: hemocytes and proteins. Thesis in Univ. of New Hampshire, 1994
  10. Choi JY, Moon MJ: The fine structure of spider (Araneus ventricosus) hemocytes. Korean J Electron Microscopy 36 : 259 -269, 2006
  11. Deevey GB: The blood cells of the Haitian tarantula and their relation to the mounting cycle. J Morphol 68 : 457-451, 1941 https://doi.org/10.1002/jmor.1050680303
  12. Fahrenbach WH: The cyanoblast: hemocyanin formation in Limulus polyphemus. J Cell Biol 44 : 445-453, 1970 https://doi.org/10.1083/jcb.44.2.445
  13. Gotz P, Boman HG: Insect immunity. In: Kerkut GA, Gilbert LI, eds, Comprehensive Insect Phylogeny, Biochemistry and Pharmacology, pp. 453-485, Pergamon Press, New York, 1985
  14. Gupta AP: Arthropod immunocytes, In: Gupta AP, ed, Hemocytic and Humoral Immunity in Arthropods, pp. 3-61, John Wiley & Sons, New Jersey, 1986
  15. Hagopian M: Unique structures in the insect granular hemocytes. J Ultrastruct Res 36 : 646-658, 1971 https://doi.org/10.1016/S0022-5320(71)90021-9
  16. Han SS, Gupta AP: Arthropod immune system. V. Activated immunocytes (granulocytes) of the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae) show increased number of microtubules and nuclear pores during immune reaction to foreign tissue. Cell Struct Funct 13 : 333-343, 1988 https://doi.org/10.1247/csf.13.333
  17. Hernandez S, Lanz H, Rodriguez MH, Torres JA, Martinez PA, Tsutsumi V: Morphological and cytochemical characterization of female Anopheles albimanus (Diptera: Culicidae) hemocytes. J Med Entomol 36 : 426-434, 1999 https://doi.org/10.1093/jmedent/36.4.426
  18. Lowenberger C: Innate immune response of Aedes aegypti. Insect Biochem Mol Biol 31 : 219-229, 2001 https://doi.org/10.1016/S0965-1748(00)00141-7
  19. Neuwirth M: The structure of the hemocytes of Galleria mellonella (Lepidoptera). J Morphol 139 : 105-124, 1973 https://doi.org/10.1002/jmor.1051390107
  20. Paul RJ: La respiration des arachnides. La Recherche 226 : 1338-1357, 1990
  21. Pech LL, Strand MR: Granular cells are required for encapsulation of foreign targets by insect haemocytes. J Cell Sci 109 : 2053-2060, 1996
  22. Pech LL, Strand MR: Plasmatocytes from the moth Pseudoplusia includens induce apoptosis of granular cells. J Insect Physiol 46 : 1565-1573, 2000 https://doi.org/10.1016/S0022-1910(00)00083-4
  23. Ratcliffe NA, Price CD: Correlation of light and electron microscopic hemocyte structure in the Dictyoptera. J Morphol 144 : 485-498, 1974 https://doi.org/10.1002/jmor.1051440409
  24. Ravindranath MH: A comparative study of the morphology and behaviour of granular haemocytes of arthropods. Cytologia 42 : 743-751, 1977 https://doi.org/10.1508/cytologia.42.743
  25. Rizki TM, Rizki RM: The cellular defense system of Drosophila melanogaster. In: King RC, Akai H, eds, Insect Ultrastructure, pp. 579-604, Plenum Press, New York, 1984
  26. Rosenberger CR, Jones JC: Studies on total blood cell counts of the southern armyworm larva, Prodenia eridania (Lepidoptera). Ann Entomol Soc Amer 53 : 351-355, 1960 https://doi.org/10.1093/aesa/53.3.351
  27. Schmit AR, Rowley AF, Ratcliffe NA: The role of Galleria mellonella hemocytes in melanin formation. J Invert Pathol 29 : 232-234, 1977 https://doi.org/10.1016/0022-2011(77)90200-2
  28. Sherman RG: Ultrastructurally different hemocytes in a spider. Can J Zool 51 : 1155-1165, 1973 https://doi.org/10.1139/z73-167
  29. Shoura SM: Fine structure of the hemocytes and neprocytes of Argas (Persicargas) arboreus (Ixodoidea: Argasidae). J Morphol 189: 17-24, 1986 https://doi.org/10.1002/jmor.1051890103
  30. Tojo S, Naganuma F, Arakawa K, Yokoo S: Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J Insect Physiol 46: 1129-1135, 2000 https://doi.org/10.1016/S0022-1910(99)00223-1
  31. Wago H, Kitano H: Morphological and functional characterization of the larval hemocytes of the cabbage white butterfly, Pieris rapae crucivora. Appl Ent Zool 20 : 1-7, 1985 https://doi.org/10.1303/aez.20.1
  32. Yokoo S, Goetz P, Tojo S: Phagocytic activities of haemocytes separated by two simple methods from larvae of two lepidopteran species, Agrotis segetum and Galleria mellonella. Appl Entomol Zool 30 : 343-350, 1995 https://doi.org/10.1303/aez.30.343
  33. Zachary D, Hoffmann JA: The haemocytes of Calliphora erythrocephala (Meig.) (Diptera). Z Zellforsch Mikrosk Anat 141 : 55-73, 1973 https://doi.org/10.1007/BF00307396