트랜치 구조 및 강자성체 박막을 이용한 홀 센서의 감도 대칭성 구현

Realization of sensitivity symmetry of Hall Sensor using Trench Structure and Ferromagnetic Thin Films

  • 박재성 (영남이공대학 전자정보계열) ;
  • 최채형 (영남대학교 전자공학과)
  • Park, Jae-Sung (Dept. of Electronic & Information Engineering, YNC) ;
  • Choi, Chae-Hyoung (Dept. of Electronic Engineering, Graduated School, Yeungnam University)
  • 발행 : 2008.07.25

초록

일반적으로 종래의 3 차원 홀 센서는 일반적으로 $B_z$에 대한 감도가 $B_x,\;B_y$에 대한 감도의 약 1/10정도에 그친다. 따라서 본 연구에서는 새로운 구조를 갖는 3 차원 홀 센서를 제안하였다. 이방성 식각을 이용하여 트랜치를 형성함으로써 감도를 약 6배 증가시켰다. 또한 자속을 집속시키기 위하여 웨이퍼 후면에 강자성체 박막을 증착시킴으로써 $B_z$에 대한 감도를 $B_x,\;B_y$에 대한 감도의 약 80%정도로 증가시켰다. 제작된 센서의 감도는 각각 361V/A T, 335V/A T, 그리고 286V/A T로 측정되었다. 센서는 $360^{\circ}$ 회전체에 대해 사인파의 출력을 가졌다. 패키징 된 센서의 감응부의 면적은 $1.2{\times}1.2mm^2$이었다. 센서의 선형성은 오차가 ${\pm}3%$로 우수하였다. 제작된 센서의 분해능은 약 $1{\times}10^{-5}T$였다.

Generally, for conventional 3-D Hall sensor it is general that the sensitivity for $B_z$ is about 1/10 compared with those for $B_x$ or $B_y$. Therefore, in this work, we proposed 3-D Hall sensor with new structures. We have increased the sensitivity about 6 times to form the trench using anisotropic etching. And we have increased the sensitivity for the $B_z$ by 80 % compared with those of $B_x$ and $B_y$ using deposition of the ferromagnetic thin films on the bottom surface of the wafer to concentrate the magnetic fluxes. Sensitivities of the fabricated sensor with Ni/Fe film for $B_x,\;B_y$, and $B_z$ were measured as 361mV/T, 335mV/T, and 286mV/T, respectively. It has also showed sine wave of Hall voltages over a $360^{\circ}$ rotation. A packaged sensing part was $1.2{\times}1.2mm^2$. The measured linearity of the sensor was within ${\pm}3%$ of error. Resolution of the fabricated sensor was measured by $1{\times}10^{-5}T$.

키워드

참고문헌

  1. F. Burger, P. -A. Besse and R. S. Popovic, "New fully intgrated 3-D silicon Hall sensor for precise angular-position measurements", Sensors and Actuators, A67(1998), pp. 72-76
  2. M. Paranjape, Lj. Ristic and I. Filaovsky, "A 3-D Vertical Hall Magnetic Field Sensor in CMOS Technology", IEEE Trans. Electron. Devices(1991), pp. 1081-1084
  3. T. Nakamura and K. Maenaka, "Integrated Magnetic Sensors", Sensors and Actuators, A21-A23(1990), pp. 762-769
  4. Lj. Ristic, M. T. DOAN and M. Paranjape, "3-D Magnetic Field Sensor Realized as a Lateral MagnetotransistorinCMOS Technology", Sensors and Actuators, A21- A23(1990), pp. 770-775
  5. Ed Ramsden, "Hall Effect Sensors: Theory & Application,", Advanstar Communications, p. 31, 2001
  6. M. Paranjape, L. M. Landsberger, M. Kahrizi, "A CMOS-compatible 2-D vertical Hall magnetic- field sensor using active carrier confinement and post-process micromachining", Sensors and Actuators A53, pp. 278-283, 1992
  7. Hsiao-Yi Lin, Tan Fu Lei, Jz-Jan Jeng, Ci-Ling Pan and Chun-Yen Chang, "A novel structure for three-dimensional silicon magnetic transducers to improve the sensitivity symmetry", Sensors and Actuators, A56(1996), pp. 233-237
  8. Osamu Tabata, "pH-controlled TMAH etchant for silicon micromachining", Sensors & Actuators. A53, pp.335-339, 1996
  9. M. Paranjape, Lj. Ristic. W. Allegretto, "Simulation, Design and Fabrication of a Vertical Hall Device for Two-Dimensional Magnetic Field Sensing", Sensors and Materials, 5, 2, pp. 091-101, 1993
  10. 정우철, 남태철, "차동검출방식을 이용한 홀 센서의 제작 및 특성", 한국센서학회지. 제7권, 제4호, pp.225-233, 1998
  11. C. Schott, "High accuracy Analog Hall probe", IEEE Trans. Instr. Meas. 46(2), pp. 613-616, 1996 https://doi.org/10.1109/19.571937
  12. Hubert Blanchard, Christina de Raad Iseli, R. S. Popovic, "Compensation of the temperature- dependent offset drift of Hall sensor", Sensors and Actuators A60, pp. 10-13, 1997
  13. Ed Ramsden, "Hall Effect Sensors: Theory & Application,", Advanstar Communications Inc., 2001