High Extracellular Calcium Increased Expression of Ank, PC-1 and Osteopontin in Mouse Calvarial Cells

  • Song, Mi-Na (Department of Cell & Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Ryoo, Hyun-Mo (Department of Cell & Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Woo, Kyung-Mi (Department of Cell & Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Kim, Gwan-Shik (Department of Cell & Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Baek, Jeong-Hwa (Department of Cell & Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University)
  • 발행 : 2008.03.31

초록

In the process of bone remodeling, mineral phase of bone is dissolved by osteoclasts, resulting in elevation of calcium concentration in micro-environment. This study was performed to explore the effect of high extracellular calcium ($Ca{^{2+}}_e$) on mineralized nodule formation and on the expression of progressive ankylosis (Ank), plasma cell membrane glycoprotein-1 (PC-1) and osteopontin by primary cultured mouse calvarial cells. Osteoblastic differentiation and mineralized nodule formation was induced by culture of mouse calvarial cells in osteoblast differentiation medium containing ascorbic acid and ${\beta}$-glycerophosphate. Although Ank, PC-1 and osteopontin are well known inhibitors of mineralization, expression of these genes were induced at the later stage of osteoblast differentiation during when expression of osteocalcin, a late marker gene of osteoblast differentiation, was induced and mineralization was actively progressing. High $Ca{^{2+}}_e$(10 mM) treatment highly enhanced mRNA expression of Ank, PC-1 and osteopontin in the late stage of osteoblast differentiation but not in the early stage. Inhibition of p44/42 MAPK activation but not that of protein kinase C suppressed high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin. When high $Ca{^{2+}}_e$(5 mM or 10 mM) was present in culture medium during when mineral deposition was actively progressing, matrix calcifiation was significantly increased by high $Ca{^{2+}}_e$. This stimulatory effect was abolished by pyrophosphate (5 mM) or levamisole (0.1-0.5 mM), an alkaline phosphatase inhibitor. In addition, probenecid (2mM), an inhibitor of Ank, suppressed matrix calcification in both control and high $Ca{^{2+}}_{e^-}$treated group, suggesting the possible role of Ank in matrix calcification by osteoblasts. Taken together, these results showed that high $Ca{^{2+}}_e$ stimulates expression of Ank, PC-1 and osteopontin as well as matrix calcification in late differentiation stage of osteoblasts and that p44/42 MAPK activation is involved in high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin.

키워드

참고문헌

  1. Adams, C.S., Mansfield, K., Perlot, R.L. and Shapiro, I.M.: Matrix regulation of skeletal cell apoptosis. Role of calcium and phosphate ions. J. Biol. Chem. 276:20316-20322, 2001 https://doi.org/10.1074/jbc.M006492200
  2. Addison, W.N., Azari, F., Srensen, E.S., Kaartinen, M.T. and McKee, M.D.: Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J. Biol. Chem. 282:15872-15883, 2007 https://doi.org/10.1074/jbc.M701116200
  3. Anderson, H.C., Sipe, J.B., Hessle, L., Dhanyamraju, R., Atti, E., Camacho, N.P. and Milln, J.L.: Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am. J. Pathol. 164:841-847, 2004 https://doi.org/10.1016/S0002-9440(10)63172-0
  4. Anderson, H.C., Harmey, D., Camacho, N.P., Garimella, R., Sipe, J.B., Tague, S., Bi, X., Johnson, K., Terkeltaub, R. and Milln, J.L.: Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleotide pyrophosphatase phosphodiesterase 1 double-deficient mice. Am. J. Pathol. 166:1711-1720, 2005 https://doi.org/10.1016/S0002-9440(10)62481-9
  5. Aubin, J.E. and Liu, F.: The osteoblast lineage. In Principles of Bone Biology, 1st ed., pp51-67, Academic Press, San Diego, 1996
  6. Beck, G.R. Jr.: Inorganic phosphate as a signaling molecule in osteoblast differentiation. J. Cell. Biochem. 90:234-243, 2003 https://doi.org/10.1002/jcb.10622
  7. Beck, G.R. Jr,, Moran, E. and Knecht, N.: Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2. Exp. Cell Res. 288:288-300, 2003 https://doi.org/10.1016/S0014-4827(03)00213-1
  8. Bellows, C.G., Aubin, J.E. and Heersche, J.N.: Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner. 14:27-40, 1991 https://doi.org/10.1016/0169-6009(91)90100-E
  9. Bellows, C.G., Heersche, J.N. and Aubin, J.E.: Inorganic phosphate added exogenously or released from beta-glycerophosphate initiates mineralization of osteoid nodules in vitro. Bone Miner. 17:15-29, 1992 https://doi.org/10.1016/0169-6009(92)90707-K
  10. Brown, E.M. and MacLeod, R.J.: Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev. 81:239-297, 2001 https://doi.org/10.1152/physrev.2001.81.1.239
  11. Dvorak, M.M. and Riccardi, D.: $Ca^{2+}$ as an extracellular signal in bone. Cell Calcium 35:249-255, 2004 https://doi.org/10.1016/j.ceca.2003.10.014
  12. Dvorak, M.M., Siddiqua, A., Ward, D.T., Carter, D.H., Dallas, S.L., Nemeth, E.F. and Riccardi, D.: Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl. Acad. Sci. U.S.A. 101:5140-5145, 2004
  13. Fedde, K.N., Blair, L., Silverstein, J., Coburn, S.P., Ryan, L.M., Weinstein, R.S., Waymire, K., Narisawa, S., Milln, J.L., MacGregor, G.R. and Whyte, M.P.: Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J. Bone Miner. Res. 14:2015-2026, 1999 https://doi.org/10.1359/jbmr.1999.14.12.2015
  14. Godwin, S.L. and Soltoff, S.P.: Extracellular calcium and platelet derived growth factor promote receptor-mediated chemotaxis in osteoblasts through different signaling pathways. J. Biol. Chem. 272:11307-11312, 1997 https://doi.org/10.1074/jbc.272.17.11307
  15. Hakim, F.T., Cranley, R., Brown, K.S., Eanes, E.D., Harne, L. and Oppenheim, J.J.: Hereditary joint disorder in progressive ankylosis (ank/ank) mice. I. Association of calcium hydroxyapatite deposition with inflammatory arthropathy. Arthritis Rheum. 27:1411-1420, 1994
  16. Harmey, D., Hessle, L., Narisawa, S., Johnson, K.A., Terkeltaub, R. and Milln, J.L.: Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1,and ank: an integrated model of the pathogenesis of mineralization disorders. Am. J. Pathol. 164:1199-1209. 2004 https://doi.org/10.1016/S0002-9440(10)63208-7
  17. Harmey, D., Johnson, K.A., Zelken, J., Camacho, N.P., Hoylaerts, M.F., Noda, M., Terkeltaub, R. and Milln, J.L.: Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in Akp2(-/-) mice. J. Bone Miner. Res. 21:1377-1386, 2006 https://doi.org/10.1359/jbmr.060619
  18. Hashimoto, S., Ochs, R.L., Rosen, F., Quach, J., McCabe, G., Solan, J., Seegmiller, J.E., Terkeltaub, R. and Lotz, M.: Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc. Natl. Acad. Sci. U.S.A. 95:3094-3099, 1998
  19. Hatch, N.E., Nociti, F., Swanson, E., Bothwell, M. and Somerman, M.: FGF2 alters expression of the pyrophosphate/phosphate regulating proteins, PC-1, ANK and TNAP, in the calvarial osteoblastic cell line, MC3T3E1(C4). Connect. Tissue Res. 46:184-192, 2005 https://doi.org/10.1080/03008200500237203
  20. Hessle, L., Johnson, K.A., Anderson, H.C., Narisawa, S., Sali, A., Goding, J.W., Terkeltaub, R. and Millan, J.L.: Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl. Acad. Sci. U.S.A. 99:9445-9949, 2002
  21. Ho, A.M., Johnson, M.D. and Kingsley, D.M.: Role of mouse ank gene in control of tissue calcification and arthritis. Science 289:265-269, 2000 https://doi.org/10.1126/science.289.5477.265
  22. Hunter, G.K., Kyle, C.L. and Goldberg, H.A.: Modulation of crystal formation by bone phosphoproteins; structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem. J. 300:723-728, 1994 https://doi.org/10.1042/bj3000723
  23. Johnson, K. and Terkeltaub, R.: Upregulated ank expression in osteoarthritis can promote both chondrocyte MMP-13 expression and calcification via chondrocyte extracellular PPi excess. Osteoarthritis Cartilage 12:321-335, 2004 https://doi.org/10.1016/j.joca.2003.12.004
  24. Johnson, K., Vaingankar, S., Chen, Y., Moffa, A., Goldring, M., Sano, K., Jin-Hua, P., Sali, A., Goding, J. and Terkeltaub, R.: Differential mechanisms of inorganic pyrophosphate production by plasma cell membrane glycoprotein-1 and B10 in chondrocytes. Arthritis Rheum. 42:1986-1997, 1999a https://doi.org/10.1002/1529-0131(199909)42:9<1986::AID-ANR26>3.0.CO;2-O
  25. Johnson, K., Moffa, A., Chen, Y., Pritzker, K., Goding, J. and Terkeltaub, R.: Matrix vesicle plasma membrane glycoprotein-1 regulates mineralization by murine osteoblastic MC3T3 cells. J. Bone Miner. Res. 14:883-892, 1999b https://doi.org/10.1359/jbmr.1999.14.6.883
  26. Johnson, K.A., Hessle, L., Vaingankar, S., Wennberg, C., Mauro, S., Narisawa, S., Goding, J.W., Sano, K., Millan, J.L. and Terkeltaub, R.: Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279:R1365-R1377, 2000 https://doi.org/10.1152/ajpregu.2000.279.4.R1365
  27. Johnson, K., Goding, J., Van Etten, D., Sali, A., Hu, S.I., Farley, D., Krug, H., Hessle, L., Milln, J.L. and Terkeltaub, R.: Linked deficiencies in extracellular PP(i) and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression. J. Bone Miner. Res. 18:994-1004, 2003 https://doi.org/10.1359/jbmr.2003.18.6.994
  28. Jono, S., Peinado, C. and Giachelli, C.M.: Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J. Biol. Chem. 275:20197-20203, 2000 https://doi.org/10.1074/jbc.M909174199
  29. Jun, J.H., Lee, S.H., Kwak, H.B., Lee, Z.H., Seo, S.B., Woo, K.M., Ryoo, H.M., Kim, G.S. and Baek, J.H.: N-acetylcysteine stimulates osteoblastic differentiation of mouse calvarial cells. J. Cell. Biochem. 103:1246-1255, 2007 https://doi.org/10.1002/jcb.21508
  30. Kim, H.K., Song, M., Jun, J.H., Woo, K.M., Kim, G.S. and Baek, J.H.: Identification of genes modulated by high extracellular calcium in coculture of mouse osteoblasts and bone marrow cells by oligo chip assay. Int. J. Oral Biol. 31:53-65, 2006
  31. Kim, Y.H., Kim, J.M., Kim, S.N., Kim, G.S. and Baek, J.H.: p44/42 MAPK activation is necessary for receptor activator of nuclear factor-$\kappa$B ligand induction by high extracellular calcium. Biochem. Biophys. Res. Commun. 304:729-735, 2003 https://doi.org/10.1016/S0006-291X(03)00661-2
  32. Lynch, M.P., Capparelli, C., Stein, J.L., Stein, G.S. and Lian, J.B.: Apoptosis during bone-like tissue development in vitro. J. Cell. Biochem. 68:31-49, 1998 https://doi.org/10.1002/(SICI)1097-4644(19980101)68:1<31::AID-JCB4>3.0.CO;2-X
  33. Murshed, M., Dympna, H., Jos, L.M., Marc, D.M. and Gerard, K.: Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 19:1093-1104, 2005 https://doi.org/10.1101/gad.1276205
  34. Nielsen, L.B., Pedersen, F.S. and Pedersen, L.: Expression of type III sodium-dependent phosphate transporters/retroviralreceptors mRNAs during osteoblast differentiation. Bone 28:160-166, 2001 https://doi.org/10.1016/S8756-3282(00)00418-X
  35. Okawa, A., Nakamura, I., Goto, S., Moriya, H., Nakamura, Y. and Ikegawa, S.: Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat. Genet. 19:271-273, 1998 https://doi.org/10.1038/956
  36. Proudfoot, D., Skepper, J.N., Hegyi, L., Bennett, M.R., Shanahan, C.M. and Weissberg, P.L.: Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ. Res. 87:1055-1062, 2000 https://doi.org/10.1161/01.RES.87.11.1055
  37. Rutsch, F., Vaingankar, S., Johnson, K., Goldfine, I., Maddux, B., Schauerte, P., Kalhoff, H., Sano, K., Boisvert, W.A., Superti-Furga, A. and Terkeltaub, R.: PC-1 nucleoside triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification. Am. J. Pathol. 158:543-554, 2001 https://doi.org/10.1016/S0002-9440(10)63996-X
  38. Rutsch, F., Ruf, N., Vaingankar, S., Toliat, M.R., Suk, A., Hhne, W., Schauer, G., Lehmann, M., Roscioli, T., Schnabel, D., Epplen, J.T., Knisely, A., Superti-Furga, A., McGill, J., Filippone, M., Sinaiko, A.R., Vallance, H., Hinrichs, B., Smith, W., Ferre, M., Terkeltaub, R. and Nrnberg, P.: Mutations in ENPP1 are associated with 'idiopathic' infantile arterial calcification. Nat. Genet. 34:379-381, 2003 https://doi.org/10.1038/ng1221
  39. Silver, I.A., Murrills, R.J. and Etherington, D.J.: Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175:266-276, 1988 https://doi.org/10.1016/0014-4827(88)90191-7
  40. Stein, G.S., Lian, J.B., Stein, J.L., van Wijnen, A.J., Frenkel, B. and Montecino, M.: Mechanisms regulating osteoblast proliferation and differentiation. In Principles of Bone Biology, 1st ed., pp69-86, Academic Press, San Diego, 1996
  41. Suzuki, A., Ghayor, C., Guicheux, J., Magne, D., Quillard, S., Kakita, A., Ono, Y., Miura, Y., Oiso, Y., Itoh, M. and Caverzasio, J.: Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells. J. Bone Miner. Res. 21:674-683, 2006 https://doi.org/10.1359/jbmr.020603
  42. Terkeltaub, R.A.: Inorganic pyrophosphate generation and disposition in pathophysiology. Am. J. Physiol. Cell Physiol. 281:C1-C11, 2001 https://doi.org/10.1152/ajpcell.2001.281.1.C1
  43. Wang, W., Xu, J., Du, B. and Kirsch, T.: Role of the progressive ankylosis gene (ank) in cartilage mineralization. Mol. Cell. Biol. 25:312-323, 2005 https://doi.org/10.1128/MCB.25.1.312-323.2005
  44. Whyte, M.P.: Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr. Rev. 15:439-461, 1994
  45. Yamaguchi, T., Chattopadhyay, N., Kifor, O., Sanders, J.L. and Brown, E.M.: Activation of p42/44 and p38 mitogenactivated protein kinases by extracellular calcium-sensing receptor agonists induces mitogenic responses in the mouse osteoblastic MC3T3-E1 cell line. Biochem. Biophys. Res. Commun. 279:363-368, 2000 https://doi.org/10.1006/bbrc.2000.3955
  46. Yamauchi, M., Yamaguchi, T., Kaji, H., Sugimoto, T. and Chihara, K.: Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am. J. Physiol. Endocrinol. Metab. 288:E608-E616, 2005 https://doi.org/10.1152/ajpendo.00229.2004
  47. Zhu, J.X., Sasano, Y., Takahashi, I., Mizoguchi, I. and Kagayama, M.: Temporal and spatial gene expression of major bone extracellular matrix molecules during embryonic mandibular osteogenesis in rats. Histochem. J. 33:25-35, 2001 https://doi.org/10.1023/A:1017587712914