SYBR Green I-based Real-time PCR Assay and Melting Curve Analysis for Rapid Detection of Staphylococcus aureus from Raw Milks Samples

Real-time PCR을 이용한 원유시료 유래 황색포도상구균의 신속 검출

  • 정재혁 (삼육대학교 약학대학) ;
  • 정순영 (삼육대학교 과학기술대학 동물과학부) ;
  • 이상진 (삼육대학교 과학기술대학 동물과학부) ;
  • 최성숙 (삼육대학교 약학대학)
  • Published : 2008.06.30

Abstract

The aim of this study was to develop a LightCycler-based real time PCR (LC-PCR) assay and to evaluate its diagnostic use for the detection of Staphylococcus aureus in raw milk samples. Following amplification of 113 bp of coa gene encoding an coagulase precursor specific for Staphylococcus aureus, melting curve and DNA sequencing analysis was performed to verify the specificity of the PCR products. Amplification of 209 bp gene encoding an altered penicillin-binding protein, PBP2a (mecA), melting curve analysis and DNA sequencing analysis was performed to verify methicillin resistance Staphylococcus aureus (MRSA). According to this study, 6 of 647 raw milk samples showed S. aureus positive and 2 of them showed a mecA positive and the detection limit was 10 fg of DNA. And we also isolated Staphylococcus chromogenes a causative agent of exudative epidermitis in pigs and cattle from 3 samples.

본 연구는 Lightcycler (Roche)를 이용한 Real-Time PCR(LC-PCR)기법을 통하여 원유시료에서 신속, 정확하게 황색포도상구균을 검출하는 기법을 개발하고자 하였다. coagulase 전구체를 coding하는 113 bp의 coa 유전자의 증폭, melting curve 분석 및 DNA염기서열을 분석하여 황색포도상구균 특유의 유전자 검출하는 기법을 개발하였다. 또한 분리된 균주중 메치실린에 내성을 나타내는 균주를 검출하고자 penicillin-binding protein, PBP2a (mecA)를 coding 하는 209 bp의 mecA 유전자의 증폭, melting curve 분석 및 DNA염기서열을 분석하여 메치실린내성 황색 포도상구균을 real-time PCR 기법으로 검출하는 기술을 개발하였다. 본 실험에 따르면 647개의 원유시료중 6개의 시료에서 황색포도상구균이 검출되었으며 이중 2개의 시료에서 분리된 황생포도상구균이 메치실린내성 황색포도상구균임을 확인하였다. 또한 DNA 검출한계는 10 fg으로 기존 PCR에 비해 매우 감도가 우수한 것을 확인하였다. 또한 3개의 원유시료에서 돼지나 소의 삼출성 피부염의 원인균인 Staphylococcus chromogenes가 분리되었다.

Keywords

References

  1. Yoon, J. C., Lee, J. C., Kim, S. K., Park, T. S., Kim, J. T., Lee, C. G., and Lee, C. Y.: Prevalence of isolated microorganisms an and antimicrobial susceptibility from half milk in dairy goats. Korea J. Vet. Res. 44(1), 151-157 (2004)
  2. Anon: Results of the Uruguay round of the multilateral trade negotiations 1993: agreement on application of sanitary and phytosanitary measures. World Trade Organisation, Genova. (1995)
  3. Codex Aimentarius Commission: Principles and guidelines for the conduct of microbiological risk assessment. CAC/GL30. Geneva (1999)
  4. European Commission: Principles for the development of risk assessment of microbiological hazards under directive 93/43/EEC covering the hygiene of Food shop. (1997)
  5. Eley, A. R.,: Microbial food poisoning, 2nd ed., London, Cha,pman & Hall. (1992)
  6. Pan, T. M., Wang, T. K., Lee, C. L., Chien, S. w., and Horng, C. B.: Food-borne disease outbreaks due to bacteria in Taiwan, 1986 to 1995. J. Clin. Microbiol., 35(5), 1260-1262 (1997)
  7. Maurer, J.: The methodology of PCR. pp 27-40: In: PCR methods in foods. Maurer J (ed.), Springer, Inc., New York, NY, USA(2006)
  8. Wilhelm, J. and Pingoud, A.: Real-time polymerase chain reaction. ChemBioChem. 4, 1120-1128 (2004) https://doi.org/10.1002/cbic.200300662
  9. Sails, A. D., Fox, A. J., Botton, F. J., Wareing, D. R. and Greenway, D. L. : A real-time PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Appl. Environ. Microbiol. 69(3), 1383-1390 (2003) https://doi.org/10.1128/AEM.69.3.1383-1390.2003
  10. Seo, K. H., Valentin,-Bon, I. E., Brackett, R. E. and Holt, P. S.: Rapid, specific detection of Salmonella enteritidis in pooled eggs by real-time PCR. J. Food Prot. 67, 864-869 (2004) https://doi.org/10.4315/0362-028X-67.5.864
  11. Studer, S., Schaerent, W., Naskova, J., Pfaeffli, H., Kaufmann, T., Kirchhofer, M. and Steiner, A: A longitudinal field study to evaluate the diagnostic properties of a quantitative real-time pplymerase chain reaction-based assay to detect Staphylococcus aureus in Milk. J. Dairy Sci. 91, 1893-1902 (2007) https://doi.org/10.3168/jds.2007-0485
  12. Martineau, F., Picard, F. J., Roy, P. H., Ouellette, M.. and Bergeron, M. G.: Species-specific and ubiquitous-DNA based assay for rapid identification of Staphylococcus aureus. J. Clin. Microbiol. 36, 618-623 (1998)
  13. Phonindaeng, P., O'reilly, M., Nowlan, P., Brmley, A. J. and Foster, T. J. : The coagulase of Staphylococcus aureus 8325-4. sequence analysis and virulence of site-specific coagulasedeficient mutants. Mol. Microbiol. 4, 393-404 (1990) https://doi.org/10.1111/j.1365-2958.1990.tb00606.x
  14. Mcdermott, P. F., Zhao, S., Wagner, D. D., Simjee, S., Walker, R. D. and Whitw, D. G. : The food safety perspective of antibiotic resistance. Animal Biotech. 13, 71-84 (2002) https://doi.org/10.1081/ABIO-120005771
  15. Anyliffe, G. A. J. : The progressive intercontinental spread of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis., 24 (Suppl. 1), S74-49 (1997) https://doi.org/10.1093/clinids/24.Supplement_1.S74
  16. Kuhl, S. A., Pattee, P. A. and Baldwin, N. J.: Chromosomal map location of the methicillin resistance determinant in Staphylococcus aureus. J. Bacteriol. 135, 460-465 (1978)
  17. Ito, T., and Hiramatsu, K.: Acquisition of methicillin resistance and progression of multiantibiotic resistance in methicillin-resistant Staphylococcus aureus. Yunsei Medical Journal. 39, 526-533 (1998) https://doi.org/10.3349/ymj.1998.39.6.526
  18. Clinical and Laboratory Standards Institute (CLSI), Performance standards for antimicrobial susceptibility test; 15th Informational Supplement Document M100-S15, CLSI, Wayne, PA.,(2005)
  19. Sabet, N. S., Subramaniam, G., Navaratnam, P and Sekaran, S. D.: Simultaneous species identification and detection of methicillin resistance in Staphylococcus using triplex real-time PCR assay. Dia. Microbiol. Infect. Dis. 56, 13-18 (2006) https://doi.org/10.1016/j.diagmicrobio.2006.02.013
  20. Anserson, L. O., Ahrens, P., Daussard, L. and Bille-Hansen, V.: Exudative epidermitis in pigs caused by toxigenic Staphylococcus chromogenes. Vet. Microbiol. 105, 291-300 (2005) https://doi.org/10.1016/j.vetmic.2004.12.006
  21. Kearns, A. M., Seiders, P. R., Wheeler, J., Freeman, R., and Steward, M.: Rapid detection of methicillin-resistant Staphylococci by multiplex PCR. J. Hosp. Infect. 43, 33-37 (1999) https://doi.org/10.1053/jhin.1999.0631
  22. Waxman, D. J. and Strominger, J. L.: Penicillin-binding proteins and the mechanism of action of b-lactam antibiotics. Annu. Rev. Bioche, 52, 825-829 (1983) https://doi.org/10.1146/annurev.bi.52.070183.004141
  23. Chambers, H. F. and Sachdeva, M.: Binding of b-lactam antibiotics to penicillin-binding proteins in methicillin-resistanr Staphylococcus aureus. J. Infect. Dis. 161, 1170-1176 (1990) https://doi.org/10.1093/infdis/161.6.1170
  24. Song, M. D., Wachi, M., Doi, D., Ishino, F. and Matsihashi, M.: Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett. 221, 167-171, (1987) https://doi.org/10.1016/0014-5793(87)80373-3