Redox reaction of Fe-based oxide mediums for hydrogen storage and release: cooperative effects of Rh, Ce and Zr additives

수소 저장 및 방출을 위한 Fe 계 산화물 매체의 환원-산화 반응: Rh, Ce 및 Zr 첨가제의 협동 효과

  • Lee, Dong-Hee (Department of Fine Chemicals Engineering & Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Park, Chu-Sik (Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Fine Chemicals Engineering & Applied Chemistry, BK21-E2M, Chungnam National University)
  • 이동희 (충남대학교 정밀응용화학과 BK21-에너지환경소재사업단) ;
  • 박주식 (한국 에너지기술연구원) ;
  • 김영호 (충남대학교 정밀응용화학과 BK21-에너지환경소재사업단)
  • Published : 2008.06.30

Abstract

Cooperative effects of Rh, Ce and Zr added to Fe-based oxide mediums were investigated using temperature programmed redox reaction (TPR/TPO) and isothermal redox reaction in the view point of hydrogen storage and release. As the results of TPR/TPO, Rh was a sale additive to remarkably promote the redox reaction on the medium as evidenced by the lower highest peak temperature, even though its addition was to accelerate deactivation of the mediums due to sintering. On the other hand, Ce and Zr additives played an important role to suppress deactivation of the medium in repeated redox cycles. The medium co-added by Rh, Ce and Zr (FRCZ) exhibited synergistic performance in the repeated isothermal redox reaction, and the amount of hydrogen produced in the water splitting step at 623 K was highly maintained at ca. $17\;mmol{\cdot}g^{-1}-Fe$ during three repeated redox cycles.

Keywords

References

  1. R. A. Hefner, 'Toward sustainable economic growth the age of energy gases', Int. J. Hydrogen Energy, Vol. 20, 1995, p. 945 https://doi.org/10.1016/0360-3199(95)00043-D
  2. P. Kruger, 'Electric power requirement for large-scale production of hydrogen fuel for the world vehicle fleet', Int. J. Hydrogen Energy, Vol. 11, 2001, p. 1137
  3. P. Kruger, 'Electric power required in the world by 2050 with hydrogen fuel production-Revised', Int. J. Hydrogen Energy, Vol. 30, 2005, p. 1515 https://doi.org/10.1016/j.ijhydene.2005.04.003
  4. T. N. Vezirolu, Hydrogen technology for energy needs of human settlements', Int. J. Hydrogen Energy, Vol. 12, 1987, p. 99 https://doi.org/10.1016/0360-3199(87)90086-3
  5. K. A. Starz, E. Auer, T. Lehmann, and R. Zuber, 'Characteristics of platinum-based electrocatalysts for mobile PEMFC applications', J. power sources, Vol. 84, 1999, p. 167 https://doi.org/10.1016/S0378-7753(99)00333-X
  6. K. Otsuka, C. Yamada, T. Kaburagi, and S. Takenaka, 'Hydrogen storage and production by redox of iron oxide for polymer electrolyte fuel cell vehicles', Int. J. Hydrogen Energy, Vol. 28, 2003, p. 335 https://doi.org/10.1016/S0360-3199(02)00070-8
  7. K. Otsuka, T. Kaburagi, C. Yamada, and S. Takenaka, 'Chemical storage of hydrogen by modified iron oxides', J. Power Sources, Vol. 122, 2003, p. 111 https://doi.org/10.1016/S0378-7753(03)00398-7
  8. V. Hacker, G. Faleschini, H. Fuchs, R. Fankhauser, G. Simader, M.Ghaemi, B. Spreitz, and K. Friedrich, 'Usage of biomass gas, for fuel cells by the SIR process', J. Power Sources, Vol. 71, 1998, p. 226 https://doi.org/10.1016/S0378-7753(97)02718-3
  9. V. Hacker, R. Fankhauser, G. Faleschini, H. Fuchs, K. Friedrich, M. Muhr, and K. Kordesch, 'Hydrogen production by steam-iron process', J. Power Sources, Vol. 86, 2000, p. 531 https://doi.org/10.1016/S0378-7753(99)00458-9
  10. M. F. Bleeker, S. R. A. Kersten, and H. J. Veringa, 'Pure hydrogen from pyrolysis oil using the steam-iron process', Catal. Today, Vol. 127, 2007, p. 278 https://doi.org/10.1016/j.cattod.2007.04.011
  11. K. Polychronopoulou, A. Bakandritsos, V. Tzitzios, J. L. G. Fierro, and A. M. Efstathiou, 'Absorption-enhanced reforming of phenol by steam over supported Fe catalysts', J. Catal, Vol. 241, 2006, p. 132 https://doi.org/10.1016/j.jcat.2006.04.015
  12. T. Montini, L. D. Rogatis, V. Gombac, P. Fornasiero, and M. Graziani, 'Rh(1%)@CexZr1-xO2-Al2O3 nanocomposites: Active and stable catalysts for ethanol steam reforming', Appl. Catal. B: Environ., Vol. 71, 2007, p. 125 https://doi.org/10.1016/j.apcatb.2006.09.003
  13. S. Takenaka, T. Kaburagi, C. Yamada, K. Nomura, and K. Otsuka, 'Storage and supply of hydrogen by means of the redox of the iron oxides modified with Mo and Rh species', J. Catal., Vol. 228, 2004, p. 66 https://doi.org/10.1016/j.jcat.2004.08.027
  14. K. Urasaki, N. Tanimoto, T. Hayashi, Y. Sekine, E. Kikuchi, and M. Matsukata, 'Hydrogen production via steam-iron reaction using iron oxide modified with very small amounts of palladium and zirconia', Appl. Catal. A: Gen., Vol. 288, 2005, p. 143 https://doi.org/10.1016/j.apcata.2005.04.023
  15. J. A. Pena, E. Lorente, E. Romero, and J. Herguido, 'Kinetic study of the redox process for storing hydrogen reduction stage', Catal. Today, Vol. 116, 2006, p. 439 https://doi.org/10.1016/j.cattod.2006.05.068
  16. M. Shimokawabe, R. Furuichi, and T. Ishii, 'Influence of the preparation history of $\alpha$-$Fe_{2}O_{3}$ on its reactivity for hydrogen reduction', Thermochim. Acta, Vol. 28, 1979, p. 287 https://doi.org/10.1016/0040-6031(79)85133-3
  17. G. Munteanu, L. Ilieva, and D. Andreeva, 'Kinetic parameters obtained from TPR data for $\alpha$-$Fe_{2}O_{3}$ and Au/$\alpha$->-$Fe_{2}O_{3}$ systems', Thermochim. Acta, Vol. 291, 1997, p. 171 https://doi.org/10.1016/S0040-6031(96)03097-3
  18. A. Pineau, N. Kanari, and I. Gaballah, 'Kinetics of reduction of iron oxides by H2 Part I: low temperature reduction of hematite', Thermochim. Acta, Vol. 447, 2006, p. 89 https://doi.org/10.1016/j.tca.2005.10.004
  19. J. Kaspar, P. Fornasiero, and M. Graziani, 'Use of $CeO_{2}$-based oxides in the three-way catalysis', Catal Today, Vol. 50, 1999, p. 285 https://doi.org/10.1016/S0920-5861(98)00510-0
  20. P. Fornasiero, R. D. Monte, G. R. Rao, J. Kaspar, S. Meriani, A. Trovarelli, and M. Graziani, 'Rh-loaded $CeO_{2}$-$ZrO_{2}$ solid solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural properties', J. Catal., Vol. 151, 1995, p. 168 https://doi.org/10.1006/jcat.1995.1019