하천 서식지 특성에 따른 피라미(Zacco platypus)의 총수은 함량 및 생태 건강성 분석

Total Mercury Contents in the Tissues of Zacco platypus and Ecological Health Assessments in Association with Stream Habitat Characteristics

  • Lee, Eui-Haeng (School of Bioscience and Biotechnology, Chungnam National University) ;
  • Yoon, Sang-Hun (School of Bioscience and Biotechnology, Chungnam National University) ;
  • Lee, Jae-Hoon (School of Bioscience and Biotechnology, Chungnam National University) ;
  • An, Kwang-Guk (School of Bioscience and Biotechnology, Chungnam National University)
  • 발행 : 2008.06.30

초록

본 연구는 피라미(Zacco platypus)를 대상으로 어류 조직별 총수은 함량을 규명하고, 서식지 특성 및 화학적 수질조건에 따른 생태 건강성을 평가하기 위한 사례연구로서 수행되었다. 2007년 6월$\sim$10월에 갑천을 대상으로 어류조사를 실시하였고 간, 신장, 아가미, 척추 및 근육 등 피라미의 5개 조직을 적출하여 직접수은분석기(DMA-80, US EPA Method 7473)을 이용하여 총수은 함량을 분석하였다. 전체 조직들의 평균 총수은 농도는 상.하류 각각 $67.2\;{\mu}g\;kg^{-1}$$20.7\;{\mu}g\;kg^{-1}$로 나타나 맑고 깨끗한 상류지역이 하수종말처리장의 영향을 받고 있는 하류지역에 비해 3배 이상 높게 나타났다. BOD, COD 및 영양염류(TN, TP)에 근거한 화학적 수질평가에서는 상류보다 하류에서 심각한 질적저하가 발생하였다. 어류를 이용한 다변수 모델인 생물통합지수(IBI)는 평균 32 "양호$\sim$보통상태"로 나타났고, S2는 42 "최적$\sim$양호상태"로 최고치를 보인 반면 S5에서는 최저치인 22 "보통$\sim$악화상태"로 나타나 지점별 변이를 보이고 있었다. 정성적 서식지평가지수(QHEI)의 경우 평균 142로서 "양호상태"로 나타났지만 지점별 변이(범위 67$\sim$181)가 크게 나타났다. 종합적으로 IBI및 QHEI를 통한 생태 건강성 평가에서는 상류지역이 양호하게 나타난 반면 어류 조직 내 수은 생물 농축도는 상반된 결과를 보였다. 따라서 총체적인 수환경 건강성 평가를 위해서는 다양한 변수를 이용한 평가기법이 필요할 것으로 사료되었다.

This research was a preliminary case study to determine the levels of total mercury in the tissues of sentinel species (Zacco platypus) and ecological health in relation to habitat characteristics and chemical conditions. We collected fishes in Gap Stream during June$\sim$October 2007 and analyzed the total mercury from five types of tissues such as liver, kidney, gill, vertebrae and muscle of Zaceo platypus using Direct Mercury Analyzer (DMA-80, US EPA Method 7473). Mean concentrations of total [Hg], based on all tissues, was 67.2 and $20.7\;{\mu}g\;kg^{-1}$, in the upstream and downstream site, respectively, indicating 3 times greater level in the upstream. In other words, the levels were higher in the pristine upstream than the downstream influenced by the wastewater disposal plant. Chemical water quality, based on BOD, COD and nutrients (TN, TP) showed that severe degradation occurred in the downstreams than the upstreams. Index of Biological Integrity (IBI) using fish multi-metric model averaged 32, indicating a "good$\sim$fair" condition and varied from 42 (excellent$\sim$good) at S2 to 22 (fair$\sim$poor) at S5 depending on the sites sampled. Qualitative Habitat Evaluation Index (QHEI) in the all sites averaged 142, which was judged as "good" habitat health, but showed a high variation (181 in Site 2 vs. 67 in Site 5). Overall data suggest that health conditions, based on IBI and QHEI, was better in the upstream sites but the mercury bioaccumulation levels in the fish tissues were opposite. We believe that measurements of various parameters are required for a diagnosis of integrative ecosystem health.

키워드

참고문헌

  1. 강희곤, 윤원용, 박상현, 박성배. 1986. 북한강에(北漢江) 서식 하는 담수어중의(淡水魚中) 중금속 함유량에 관한 연구(제2보). 한국육수학회지 19(1): 79-88
  2. 공동수. 2002. 생물학적 수질기준 설정 필요성 및 접근방안. 환 경생물 20 (special issue): 38-49
  3. 김명희, 박성배. 1981. 담수어중의(淡水魚中) 총수은함량에(總 水銀含量) 관한 연구 (1)-수종의 (數種) 금강하류 (錦江下 流) 담수어에(淡水魚) 대하여. 한국육수학회지 14(3): 13- 20
  4. 김익수, 박종영. 2002. 원색도감 한국의 민물고기. 교학사
  5. 배대열, 안광국. 2006. 생물학적 다변수 모델 적용 및 수화학 분석에 의거한 갑천 생태계 평가. 한국육수학회지 39(2): 198-208
  6. 손동헌, 홍순각, 송철용, 전상린. 1982. 담수어중의 총수은함량 에 관한 연구. 한국식품과학회지 14(2): 168-173
  7. 손영목, 송호복. 2006. 금강의 민물고기. 지성사
  8. 식약청. 2007. 제1. 총칙-제4. 규격 외 일반가공식품, 식품공전 (전면개편 개정 후). 23p.
  9. 안광국, 김자현. 2005. 물리적 서식지평가기법 및 어류 다변수 평가모델에 의거한 대전천의 생태학적 건강도 진단. 한국육수학회지 38(3): 361-371
  10. 안광국, 이의행. 2006. 어류의 군집 메트릭 모델을 이용한 유구 천의 생태 건강도 평가. 한국육수학회지 39(3): 310-319
  11. 안광국, 이재연, 배대열, 김자현, 황순진, 원두희, 이재관, 김창수. 2006. 우리나라 주요하천 수계에서 다변수모델을 이용한 생태학적 수환경 평가. 한국물환경학회지 22(5): 796-804
  12. 안광국, 이재연, 장하나. 2005. 유등천에서의 생태학적 건강도 평가 및 수질양상. 한국육수학회지 38(3): 341-351
  13. 안광국, 최지웅. 2006. 초강의 통합적 생태건강성 평가. 한국하천호수학회지 39(3): 320-330
  14. 안광국, 한정호. 2007. 정수 생태계 건강성 평가를 위한 다변수 메트릭 모델 개발. 한국육수학회지 40(1): 72-81
  15. 조규석, 박종호, 강주찬. 2004a. 수은, 납 및 구리에 대한 붕어 (Carassius auratus)와 돌고기(Pungtungia herzi) 자어의 급성독성. 한국물환경학회지 20(3): 265-268
  16. 조석주, 배경석, 정의근, 윤종철, 이상열, 이종현, 이승천, 윤호균, 신정식, 김명희. 2004b. 한강 및 지천에 분포하는 어류 체 내의 유해성 중금속 농도에 관한 연구. 서울특별시 보건환 경연구원보 40: 465-473
  17. 환경부. 2006. 수은관리 종합대책. 환경보건정책과-649
  18. 황인담, 기노석, 정인호, 이점상, 이재형. 1988. 수은 중독에 관 한 실험적 연구. 한국환경보건학회지 14(1): 103-113
  19. Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd Ed, EPA 841-B-99-002. US EPA Office of Water, Washington, D.C., USA
  20. Carlos, S. 1979. Mercury in marine and freshwater fish of Papua New Guinea. Australian Journal of Marine and Freshwater Research 30(5): 617-623 https://doi.org/10.1071/MF9790617
  21. Hamdy, M.K. and N.V. Prabhu. 1979 Behavior of mercury in biosystems III. Biotransference of mercury through food chains. Bulletin of Environmental Contamination and Toxicology 21(1-2): 170-178 https://doi.org/10.1007/BF01685406
  22. Horton, R.E. 1945. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56: 275-370 https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  23. Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fishieries 6: 21-27 https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
  24. Lee, E.-H. and K.-G. An. 2007. Preliminary studies on mercury bioaccumulation within various fish tissues as heavy metal stressor in aquatic ecosystems. Kor. J. Limnol. 40(4): 569-575
  25. Lee, J.-S., J.-C. Kang, and Y.-K. Shin. 2001. Histological responses of the flounder, paralichthys olivaceus exposed to copper, Journal of Fish Pathology 14(2): 81-90
  26. Ohio EPA. 1989. Biological criteria for the protection of aquatic life. Vol. III, Standardized biological field sampling and laboratory method for assessing fish and macroinvertebrate communities. U.S.A.
  27. Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross and R.M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrate and fish. EPA/444/4-89-001. Office of water regulations and standards. US EPA. Washington. DC, U.S.A.
  28. Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. American Geophysical Union Transactions 38: 913-920 https://doi.org/10.1029/TR038i006p00913
  29. US EPA. 1993. Fish field and laboratory methods for evaluating the biological integrity of surface waters. EPA 600- R-92-111. Environmental Monitoring systems Laboratory- Cincinnati office of Modeling, Monitoring systems, and quality assurance Office of Research Development, US EPA, Cincinnati, Ohio 45268, U.S.A.
  30. US EPA. 1994. Water quality standards handbook. EPA- 823-B-94-005a & b. US Environmental Protection Agency, Office of Water. Washington, DC
  31. US EPA. 2000. Test Method for Evaluating Solid Waste, Physical/Chemical Methods: Method #7473, SW 846, Update IVA, US GPO, Washington DC
  32. US EPA. 2005. What You Need to Know About Mercury in Fish and Shellfish. EPA-823-F-04-009