Phosphate Adsorption-Desorption of Kaolinite KGa-2 (Source Clay)

카올리나이트 KGa-2 (표준 점토)의 인산염 흡착-탈착 특성

  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Choi, Jae-Ho (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Moon, Dong-Hyuk (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soo-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Do, Jin-Youn (School of Cultural Assets, Gyeongju University)
  • 조현구 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 최재호 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 문동혁 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 도진영 (경주대학교 문화재학부)
  • Published : 2008.06.30

Abstract

The characteristics of phosphate adsorption-desorption on kaolinite was studied by batch adsorption experiments and detailed adsorbed state of phosphate on kaolinite surface was investigated using ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectroscopy. The phosphorous contents were measured using UV-VIS-IR spectrophotometer with 820 nm wavelength. The adsorbed P was generally increased with increasing pH value in the range of pH 4 to pH 9, however it is not distinct. Moreover the adsorbed P was significantly changed with different initial phosphate concentration. The adsorption isotherms were well fitted with the Langmuir equation, Temkin equation, and Freundlich equation in descending order. The maximum Langmuir adsorption capacity of kaolinite KGa-2 is 232.5 ($204.1{\sim}256.5$) mg/kg and has very higher value than that of kaolinite KGa-1b. Most of adsorbed phosphate on kaolinite were not easily desorbed to aqueous solution, but might fixed on kaolinite surface. However it needs further research about the exact desorption experiment. It was impossible to recognize phosphorous adsorption bands on kaolinite in ATR-FTIR spectrum from kaolinite bands themselves, because the absorption peaks of phosphorous have very similar positions with those of kaolinite, and the intensities of the former were very weak in comparison with those of the latter.

카올리나이트 KGa-2 (표준 점토)의 인산염 흡착-탈착 특성을 규명하기 위하여 벳치(batch) 흡착 실험을 실시하였으며, 흡착 상태를 알아보기 위하여 ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) 분광분석을 실시하였다. 인의 함량은 UV-VIS-IR 분광분석 기를 사용하여 측정하였으며, 이 때 파장은 820 nm를 이용하였다. pH 4에서 pH 9 범위 내에서 카올리나이트 KGa-2의 인산염 흡착량은 pH가 증가하면 대체적으로 증가하는 경향을 나타내지만, 인산염 농도에 따라 매우 다른 형태를 보여준다. 카올리나이트 KGa-2의 인산염 흡착 특성은 랑미어 흡착등온선, 템킨 흡착등온선, 프로인드리히 흡착등온선 순으로 잘 부합하며, 랑미어 최대 흡착능은 $204.1{\sim}256.5\;mg/kg$, 평균간은 232.5 mg/kg으로서, 카올리나이트 KGa-1b에 비하여 높은 인산염 흡착능을 가진다. 카올리나이트에 흡착된 대부분의 인산염이 탈착되기보다, 광물 내에 고착되는 경향을 나타내지만 이에 대해서는 후속적인 실험이 필요한 것으로 판단된다. ATR${\sim}$FTIR 스펙트럼에서 카올리나이트에 의한 흡수피크의 위치가 인 피크와 거의 중첩되고, 카올리나이트에 의한 흡수 피크의 강도가 인 피크에 비하여 월등히 크기 때문에 카올리나이트에 흡착된 인에 의한 피크를 카올리나이트 자체에 의한 피크로부터 분리하는 것이 거의 불가능하였다.

Keywords

References

  1. 조현구, Johnston, C.T. and Premachandra, G.S. (2006) 카올리나이트 KGa-1b (표준 점토)의 인산염 흡착 특성. 한국광물학회지, 19, 247-258
  2. Al-Kanani, T. and MacKenzie, A.F. (1991) Sorption and desorption of orthophosphate and pyrophosphate by mineral fractions of soils, goethite, and kaolinite. Can. J. Soil Sci., 71, 327-338 https://doi.org/10.4141/cjss91-032
  3. Arai, Y. and Sparks, D.L. (2001) ATR_FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface. J. Colloid Interface Sci., 241, 317-326 https://doi.org/10.1006/jcis.2001.7773
  4. Bhatti, J.S. and Comerford, N.B. (2002) Measurement of phosphorous desorption from a spodic horizon using two different desorption methods and pH control. Commun. Soil Sci. Plant Anal., 33, 845-853 https://doi.org/10.1081/CSS-120003070
  5. Bhatti, J.S., Comerford, N.B., and Johnston, C.T. (1998) Influence of oxalate and soil organic matter on sorption and desorption of phosphate onto a Spodic horizon. Soil Sci. Soc. Am. J., 62, 1089-1095 https://doi.org/10.2136/sssaj1998.03615995006200040033x
  6. Borden, D. and Giese, R.F. (2001) Baseline studies of the clay minerals society source clays: Cation exchange capacity measurements by the ammonia-electrode method. Clays Clay Miner., 49, 444-445 https://doi.org/10.1346/CCMN.2001.0490510
  7. Celi, L., De Luca, G., and Barberis, E. (2003) Effects of interaction of organic and inorganic P with ferrihydrite and kaolinite-iron oxide systems on iron release. Soil Science, 168, 479-488 https://doi.org/10.1097/00010694-200307000-00003
  8. Chen, Y.-S. R., Butler, J.N., and Stumm, W. (1973) Adsorption of phosphate on alumina and kaolinite from dilute aqueous solutions. J. Colloid Interf. Sci., 43, 421-436 https://doi.org/10.1016/0021-9797(73)90388-3
  9. Chipera, S.J. and Bish, D.L. (2001) Baseline studies of the clay minerals society source clays: Powder x-ray diffraction anaylses. Clays Clay Miner., 49, 398-409 https://doi.org/10.1346/CCMN.2001.0490507
  10. Eaton, A.D., Clesceri, L.S., Rice, E.W., and Greenberg, A.E. (Eds) (2005) Standard Methods for the Examination of Water and Wastewater (21st Ed). 4-159
  11. Edzwald, J.K., Toensing, D.C., and Leung, M.C. (1976) Phosphate adsorption reactions with clay minerals. Environ. Sci. Tech., 10, 485-490 https://doi.org/10.1021/es60116a001
  12. Fontes, M.P.F. and Weed, S.B. (1996) Phosphate adsorption by clays from Brazilian Oxisols: relationships with specific area and mineralogy, Geoderma, 72, 37-51 https://doi.org/10.1016/0016-7061(96)00010-9
  13. Goldberg, S. and Johnston, C.T. (2001) Mechanism of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science, 234, 204-216 https://doi.org/10.1006/jcis.2000.7295
  14. Goldberg, S. and Sposito, G. (1985) On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces: A review. Commun. Soil Sci. Plant Anal., 16, 806-821
  15. Gong, W. (2001) A real time in situ ATR-FTIR spectroscopic study of linear phosphate adsorption on titania surfaces. Int. J. Miner. Process., 63, 147-165 https://doi.org/10.1016/S0301-7516(01)00045-X
  16. Holford, L.C.R., Hird, C., and Lawrie, R. (1997) Effects of animal effluents on the phosphorus sorption characteristics of soils. Aust. J. Soil Res., 35, 365-373 https://doi.org/10.1071/S96048
  17. Ioannou, A., Dimirkou, A., and Papadopoulos, P. (1998) Phosphate sorption by goethite and kaolinite-goethite system as described by isotherms. Commun. Soil Sci. Plant Anal., 29, 2175-2190 https://doi.org/10.1080/00103629809370101
  18. Johnston, C.T. and Wang, S-L. (2002) Application of vibrational spectroscopy in soil and environmental sciences. In: Chalmers, J.M. and Griffiths, P.R. (eds.) Handbook of Vibrational Spectroscopy: Vol. 4. Applications in Industry, Materials and the Physical Sciences. John Wiley & Sons, 3192-3205
  19. Kafkafi, U., Posner, A.M., and Quirk, J.P. (1967) Desorption of phosphate fom kaolinite. Soil. Sci. Soc. Amer. Proc., 31, 348-353 https://doi.org/10.2136/sssaj1967.03615995003100030019x
  20. Kafkafi, U., Giskin, M., and Hagin, J. (1970) Phosphate and silica adsorption and desorption from soils. Israel J. Chemistry, 8, 373-381 https://doi.org/10.1002/ijch.197000043
  21. Liu, H.F. and Liptak, B.E. (ed) (2000) Groundwater and Surface Water Pollution. CRC Press LLC, 52-62
  22. Lookman, R., Grobet, P., Merckx, R., and van Riemsdijk, W.H. (1997) Application of 31P and Al MAS NMR for phosphate speciation studies in soil and aluminum hydroxide: promises and constraints. Geoderma, 80, 369-388 https://doi.org/10.1016/S0016-7061(97)00061-X
  23. Luengo, C., Brigante, M., Antelo, J., and Avena, M. (2006) Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements. J. Colloid Interf. Sci., 300, 511-518 https://doi.org/10.1016/j.jcis.2006.04.015
  24. Mermut, A.R. and Cano, A.F. (2001) Baseline studies of the clay minerals society source clays: Chemical analyses of major elements. Clays Clay Miner., 49, 381-386 https://doi.org/10.1346/CCMN.2001.0490504
  25. Muljadi, D., Posner, A.M., and Quirk, J.P. (1966) The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite. J. Soil Sci., 17, 238-247 https://doi.org/10.1111/j.1365-2389.1966.tb01469.x
  26. Peak, D., Ford, R.G., and Sparks, D.L. (1999) An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. J. Colloid and Interface Sci., 218, 289-299 https://doi.org/10.1006/jcis.1999.6405
  27. Pissarides, A., Stewart, J.W., and Rennie, D.A. (1968) Influence of cation saturation on phosphorous adsorption by selected clay minerals. Can. J. Soil Sci., 48, 151-157 https://doi.org/10.4141/cjss68-018
  28. Rao, N.S. and Prasad, P.R. (1997) Phosphate pollution in the groundwater of lower Vamsadhara river basin, India. Environ. Geol., 31, 117-122 https://doi.org/10.1007/s002540050170
  29. Sato, S. and Comerford, N.B. (2006) Assessing methods for developing phosphorous desorption isotherms from soils using anion exchange membranes. Plant and Soil, 279, 107-117 https://doi.org/10.1007/s11104-005-0437-2
  30. Sei, J., Jumas, J.C., Olivier-Fourcade, J., Quiquampoix, H., and Staunton, S. (2002) Role of iron oxides in the phosphate adsorption properties of kaolinites from the Ivory coast. Clays Clay Miner., 50, 217 -222 https://doi.org/10.1346/000986002760832810
  31. Sparks, D.L. (2003) Environmental Soil Chemistry. Academic Press, 352p.
  32. Sui, Y. and Thompson, M.L. (2000) Phosphorus sorption, desorption, and buffering capacity in a Biosolids-Amended Mollisol. Soil Sci. Soc. Am. J., 64, 164-169 https://doi.org/10.2136/sssaj2000.641164x
  33. Taylor, J.C. (1991) Computer program for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction, 6, 2-9 https://doi.org/10.1017/S0885715600016778
  34. Tejedor-Tejedor, M.I. and Anderson, M.A. (1989) Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir, 6, 602-611 https://doi.org/10.1021/la00093a015
  35. Zhou, M. and Li, Y. (2001) Phosphorus-sorption characteristics of calcareous soils and limestone from the Southern Everglades and adjacent farmlands. Soil Sci. Soc. Am. J., 65, 1404-1412 https://doi.org/10.2136/sssaj2001.6551404x