무안 지역, 삼보 광상의 금광화작용

Hydrothermal Gold Mineralization of the Sambo Deposit in the Muan Area, Korea

  • 박상준 (고려대학교 지구환경과학과) ;
  • 최선규 (고려대학교 지구환경과학과)
  • Pak, Sang-Joon (Department of Earth and Environmental Sciences, Korea University) ;
  • Choi, Seon-Gyu (Department of Earth and Environmental Sciences, Korea University)
  • 발행 : 2008.06.28

초록

백악기 함평분지 서측에 위치하는 삼보광상은 유문암내에 배태되는 $N10{\sim}20W$ 주향의 함금석영세맥(지자맥)과 선캠브리아기의 편마암 열극을 충진하는 NE 계열의 석영맥(풍자맥.광산맥.풍자지맥)으로 구성된다. 함금석영세맥은 주로 유문암의 미세 열극 따라 단속적인 불규칙상 세맥으로 배태되며, 에렉트럼은 미세 열극을 따라 모암내에서 산점 분포하거나, 세맥내 황철석의 용식 공간에서 정출하는 적철석과 밀접히 공생한다. 함금석영세맥의 광화유체($H_2O/-NaCl$ 계)는 $340{\sim}200^{\circ}C$의 균일화온도 및 <2.7 eq. wt.% NaCl의 염농도를 보인다. 반면 NE 석영맥의 유체($H_2O-NaCl/-CO_2$계)는 $400{\sim}190^{\circ}C$의 균일화 온도 및 <7.9 eq. wt.% NaCl의 염농도를 보인다. 이 두 유체계는 서로 다른 물리화학적 조건을 보이는 반면 공통적으로 초기 비등 이후 혼입의 유체 진화 과정을 보인다. 삼보광상은 백악기 인리형 분지와 관련된 NNW 방향의 인장성 열극 형성과 밀접한 관련을 보이며 각맥별 광화작용은 서로 다른 기원의 광화유체에 의해 진행되었다. 삼보광상에서 산출되는 석영맥, 광석광물, 광화유체에 대한 연구를 종합적으로 검토한 결과 삼보광상의 금광화작용은 성인적으로 백악기 지구조운동에 의한 인리형 분지 형성과 관련된 인장형 열극을 충진한 천열수 광상으로 해석된다.

The Sambo gold deposit located nearby the Cretaceous Hampyeong basin is composed of gold quartz fine vein(the Jija vein) within Cretaceous rhyolite showing $N10{\sim}20W$ trends as well as $N5{\sim}10E$ trending quartz veins(the Pungja, Gwangsan and Pungjaji veins) in Precambrian gneiss. The gold vein typically displays the intermittent and irregular fine veins within rhyolite. Electrum is disseminated in wallrock along the fine cracks as well as coexists with hematite replacing pyrite. Ore-forming fluids from the mineralized vein($H_2O/-NaCl$ system, Th; $340{\sim}200^{\circ}C$, Salinity <2.7 eq. wt.% NaCl) and NE-trending veins($H_2O-NaCl/-CO_2$ system, Th; $400{\sim}190^{\circ}C$, salinity <7.9 eq. wt.% NaCl) are featured by dissimilar physicochemical conditions but their fluid evolution trends(boiling and mixing) are similar with each other. Gold veins of the Sambo deposit filled along NNW-trending tension crack are related to pull-apart basin evolution. Selective gold mineralization of the deposit reflect to dissimilarity between two ore-forming fluid sources. Consequently, gold veining of the Sambo deposit formed at shallow-crustal level and could be categorized into epithermal-type gold deposit related to tensional fractures filling triggered by Cretaceous geodynamics.

키워드

참고문헌

  1. Ahn, K.-S. (2007) Corrosion of calcareous rocks and ground subsidence in the Muan Area, Jeonnam, Korea. Jour. Petrol. Soc. Korea, v. 16, p. 47-58
  2. Burruss, R.C. (1981) Analysis of phase equilibria in C-OH- S fluid inclusions. In Hollister, L. S. and Crawford, M. L. (eds) Fluid inclusions: Applications to petrology: Mineralogical Association of Canada Short Course 6, p. 39-74
  3. Choi, S.-G. and Pak, S.J. (2007) The origin and evolution of the Mesozoic ore-forming fluids, South Korea : Their genetic implications. Econ. Env. Geol., v. 40, p. 517-535
  4. Choi, S.-G., Lee, D.-E., Pak, S.J., Choi, S.-H. and Kang, H.-S. (2001) Genetic Model of Mineral Exploration for the Korean Au-Ag Deposits; Mugeug Mineralized Area. Econ. Env. Geol., v. 34, p. 423-435
  5. Choi, S.-G., Ryu, I.-C., Pak, S.J., Wee, S.M., Kim, C.S. and Park, M.E. (2005) Cretaceous epithermal gold-silver mineralization and geodynamic environment, Korea. Ore Geol. Review, v. 26, p. 115-135 https://doi.org/10.1016/j.oregeorev.2004.10.005
  6. Choi, Y.S. (1995) Structural evolution of the Cretaceous Eumseong Basin, Korea: Ph D thesis, Seoul National University, Seoul, 159p
  7. Chun, S.S. and Chough, S.K. (1992) Tectonic history of Cretaceous sedimentary basins in the southwestern Korean Peninsula and Yellow Sea. In Chough, S.K. (ed.) Sedimentary basins in the Korean Peninsula and adjacent seas. Hanlim Pub., Seoul, p. 60-76
  8. Cole, D.R. and Drummond, S.E. (1986) The effect of transport and boiling on Au/Ag ratios in hydrothermal solutions: A preliminary assessment and possible implications for the formation of epithermal preciousmetal ore deposits. Jour. Geochem. Explor., v. 25, p. 45-79 https://doi.org/10.1016/0375-6742(86)90007-5
  9. Drummond, S.E. and Ohmoto, H. (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol., v. 80, p. 126-147 https://doi.org/10.2113/gsecongeo.80.1.126
  10. Haynes, F.M. (1985) Determination of fluid inclusion compositions by sequential freezing. Econ. Geol., v. 80, p. 1-26 https://doi.org/10.2113/gsecongeo.80.1.1
  11. Hong, J.-P., Suk, D. and Doh, S.-J. (2007) Magnetic characterization of the Cretaceous rocks from the Buyeo and Hampyeong basins. Econ. Env. Geol., v. 40, p. 191-207
  12. Kang, H.-S., Pak, S.J., Choi, S.-G. and Choi, D.-H. (2005) The exploration of Hampyeong-Sonbul Au-Ag deposits Korea. Society of Economic and Environmental Geology. Annual Symposium, p. 71-73
  13. Lee, C.-S., Kim, J. and Kim, H.-N. (1996) Mineralization of the gold-silver ore deposits in Naju-Youngam area. v. 17, p. 166-173
  14. Lee, D.W. and Paik, K.H. (1990) Evolution of strike-slip fault controlled Cretaceous Yongdong Basin, South Korea: Signs of strike-slip tectonics during infilling. Jour. Geol. Soc. Korea, v. 26, p. 257-276
  15. Pak, S.J. and Choi, S.-C. (2008) Hydrothermal gold-silver mineralization of the Gajok deposit in the Hongcheon mining district, Korea. v. 21, p. 1-15
  16. Pak, S.J. Choi, S.-G. and Choi, S.H. (2004) Systematic mineralogy and chemistry of gold-silver vein deposits in the Taebaeksan district in Korea: Distal relatives of a porphyry system. Min. Mag., v. 68, p. 467-487 https://doi.org/10.1180/0026461046830199
  17. Pak, S.J., Choi, S.-C. and Lee, D.-L. (2003) The genetic implication of hydrothermal alteration of epithermal deposits from the Mugeuk area. v. 16, p. 265-280
  18. Park, H.I., Chang, H.W. and Jin, M.S. (1988) K-Ar ages of mineral deposits in the Taebaeg Mountain district. Jour. Korean Inst. Mining Geol., v. 21, p. 57-67
  19. Potter, R.W., III, Clynne, M.A. and Brown, D.L. (1978) Freezing point depression of aqueous sodium chloride solutions. Econ. Geol., v. 73, p. 284-285 https://doi.org/10.2113/gsecongeo.73.2.284
  20. Seward, T.M. (1973) Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim. Cosmochim. Acta., v. 37, p. 337-399
  21. Seward, T.M. (1982) The transport and deposition of gold in hydrothermal systems. In Foster, R.P. (ed.) Gold '82: The Geology, Geochemistry and Genesis of Gold Deposits. A.A. Balkema, Rotterdam, The Netherlands. p. 165-181
  22. Shimazaki, H., Lee, M.S., Tsusue, A. and Kaneda, H. (1986) Three epochs of gold mineralization in South Korea: Mining Geol., v. 36, p. 265-272