Radiotracer Methods for Targeted Imaging of the Epidermal Growth Factor Receptor

Epidermal Growth factor 수용체 영상을 위한 방사성추적자 기술

  • Jung, Kyung-Ho (Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Kyung-Han (Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 정경호 (성균관대학교 의과대학 삼성서울병원 핵의학과) ;
  • 이경한 (성균관대학교 의과대학 삼성서울병원 핵의학과)
  • Published : 2008.06.30

Abstract

While indirect targeting strategies using reporter-genes are taking center stage in current molecular imaging research, another vital strategy has long involved direct imaging of specific receptors using radiolabeled ligands. Recently, there is renewal of immense interest in this area with particular attention to the epidermal growth factor receptor (EGFR), a transmembrane glycoprotein critically involved in the regulation of many cellular functions and malignancies. Recently, two novel classes of EGFR-targeting anticancer drugs have entered clinical trials with great expectations. These are monoclonal antibodies such as cetuximab that target the extracellular domain, and small molecule tyrosine kinase inhibitors such as gefitinib (lressa) and erlotinib (Tarceva) that target the catalytic domain of the receptor. However, early results have showed disappointing survival benefits, disclosing a major challenge for this therapeutic strategy; namely, the need to identify tumors that are most likely to respond to the agents. To address this important clinical issue, several noninvasive imaging techniques are under investigation including radiolabeled probes based on small molecule tyrosine kinase inhibitors, anti-EGFR antibodies, and EGF peptides. This review describes the current status, limitations, and future prospects in the development of radiotracer methods for EGFR imaging.

Keywords

References

  1. Yarden Y, Sliwkowski M. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2001;2:127-37 https://doi.org/10.1038/35052073
  2. Hynes NE, Lane HA. ErbB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5:341-54 https://doi.org/10.1038/nrc1609
  3. Gaeste lM. MAPK AP kinases IMKs I two's company, three's a crowd. Nat Rev Mol Cell Biol 2006;7: 120-30 https://doi.org/10.1038/nrm1834
  4. Hill CS, Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 1995;80:199-211 https://doi.org/10.1016/0092-8674(95)90403-4
  5. Vivanco I, Sawyers CL. The phosphatidylinositol 3- kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2:489-501 https://doi.org/10.1038/nrc839
  6. Shaw RJ, Cantley LC. Ras, PI(3)K, and mTOR signaling controls tumor cell growth. Nature 2006;441:424-30
  7. Chattopadhyay A, Vecchi M, Ji Q, Mernaugh R, Carpenter G. The role of individual SH2 domains in mediating association of phospholipase C-g1 with the activated EGF receptor. J Biol Chem 1999;274: 26091-7 https://doi.org/10.1074/jbc.274.37.26091
  8. Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 2005;23:2445-59 https://doi.org/10.1200/JCO.2005.11.890
  9. Mendelsohn J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 1997; 3:2703-7
  10. Hortobagyi GN. Trastuzumab in the treatment of breast cancer. N Engl J Med 2005;353:1734-6 https://doi.org/10.1056/NEJMe058196
  11. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497-500 https://doi.org/10.1126/science.1099314
  12. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-3 https://doi.org/10.1056/NEJMoa040938
  13. Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 2005;97:643-55 https://doi.org/10.1093/jnci/dji112
  14. Hirsch FR, Varella-Garcia M, McCoy J, West H, Xavier AC, Gumerlock P, et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J Clin Oncol 2005;23:6838-45 https://doi.org/10.1200/JCO.2005.01.2823
  15. Dziadziuszko R, Holm B, Skov BG, Osterlind K, Sellers MV, Franklin WA, et al. Epidermal growth factor receptor gene copy number and protein level are not associated with outcome of non-small-cell lung cancer patients treated with chemotherapy. Ann Oncol 2007;18:447-52 https://doi.org/10.1093/annonc/mdl407
  16. Moroni M, Veronese S, Benvenuti S, Marrapese G, Sartore-Bianchi A, Di Nicolantonio F, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to anti EGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 2005;6:279-86 https://doi.org/10.1016/S1470-2045(05)70102-9
  17. Dissoki S, Aviv Y, Laky D, Abourbeh G, Levitzki A, Mishani E. The effect of the $[^{18}F]$-PEG group on tracer qualification of [4-(phenylamino)-quinazoline-6-YL]-amide moiety--an EGFR putative irreversible inhibitor. Appl Radiat Isot. 2007;65:1140-51 https://doi.org/10.1016/j.apradiso.2007.04.014
  18. Goldenberg A, Masui H, Divgi C, Kamrath H, Pentlow K, Mendelsohn J. Imaging of human tumor xenografts with an $^{111}In$-labeled anti-epidermal growth factor receptor monoclonal antibody. J Natl Cancer Inst. 1989;81:1616-25 https://doi.org/10.1093/jnci/81.21.1616
  19. Divgi CR, Welt S, Kris M, Real FX, Yeh SD, Gralla R, Merchant, et al. Phase I and imaging trial of indium $^{111}In$-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst. 1991;83:97-104 https://doi.org/10.1093/jnci/83.2.97
  20. Dadparvar S, Krishna L, Miyamoto C, Brady LW, Brown SJ, Bender H, et al. $^{111}In$-labeled anti-EGFr-425 scintigraphy in the detection of malignant gliomas. Cancer. 1994;73(3 Suppl):884-9 https://doi.org/10.1002/1097-0142(19940201)73:3+<884::AID-CNCR2820731320>3.0.CO;2-U
  21. Wen X, Wu QP, Ke S, Ellis L, Charnsangavej C, Delpassand AS, et al. Conjugation with $^{111}In$-DTPA-poly(ethylene glycol) improves imaging of anti-EGF receptor antibody C225. J Nucl Med. 2001; 42:1530-7
  22. Iznaga-Escobar N, Torres Arocha LA, Morales Morales A, Ramos Suzarte M, Rodriguez Mesa N, Perez Rodriguez R. $^{99m}Tc$antiepidermal growth factor-receptor antibody in patients with tumors of epithelial origin: part II. Pharmacokinetics and clearances. J Nucl Med. 1998;39:1918-27
  23. Schatten C, Pateisky N, Vavra N, Ehrenbock P, Angelberger P, Sivolapenko G, et al. Lymphoscintigraphy with $^{123}I$-labeled epidermal growth factor. Lancet. 1991;337:395-6 https://doi.org/10.1016/0140-6736(91)91169-U
  24. Vinter-Jensen L, Frokiaer J, Jorgensen PE, Marqversen J, Rehling M, Dajani EZ, et al. Tissue distribution of $^{131}I$-labeled epidermal growth factor in the pig visualized by dynamic scintigraphy. J Endocrinol 1995;144:5-12 https://doi.org/10.1677/joe.0.1440005
  25. Cuartero-Plaza A, Martinez-Miralles E, Rosell R, Vadell-Nadal C, Farre M, Real FX. Radiolocalization of squamous lung carcinoma with $^{131}I$-labeled epidermal growth factor. Clin Cancer Res 1996;2: 13-20
  26. Senekowitsch-Schmidtke R, Steiner K, Haunschild J, Mollenstadt S, Truckenbrodt R. In vivo evaluation of epidermal growth factor (EGF) receptor density on human tumor xenografts using radiolabeled EGF and anti-(EGF receptor) mAb 425. Cancer Immunol Immunother 1996;42:108-14 https://doi.org/10.1007/s002620050259
  27. Rusckowski M, Qu T, Chang F, Hnatowich DJ. $^{99m}Tc$ labeled epidermal growth factor-tumor imaging in mice. J Pept Res 1997; 50:393-401 https://doi.org/10.1111/j.1399-3011.1997.tb01200.x
  28. Babaei MH, Almqvist Y, Orlova A, Shafii M, Kairemo K, Tolmachev V. $[^{99m}Tc]$ HYNIC-hEGF, a potential agent for imaging of EGF receptors in vivo: preparation and pre-clinical evaluation. Oncol Rep 2005;13:116911-5
  29. Reilly RM, Kiarash R, Sandhu J, Lee YW, Cameron RG, Hendler A, et al. A comparison of EGF and MAb 528 labeled with $^{111}In$ for imaging human breast cancer. J Nucl Med 2000;41:903-11
  30. Reilly RM, Kiarash R, Cameron RG, Porlier N, Sandhu J, Hill RP, et al. $^{111}In$-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J Nucl Med 2000;41:429-38
  31. Reilly RM, Scollard DA, Wang J, Mondal H, Chen P, Henderson LA, et al. A kit formulated under good manufacturing practices for labeling human epidermal growth factor with $^{111}In$ for radiotherapeutic applications. J Nucl Med 2004;45:701-8
  32. Bailey KE, Costantini DL, Cai Z, Scollard DA, Chen Z, Reilly RM, et al. Epidermal growth factor receptor inhibition modulates the nuclear localization and cytotoxicity of the Auger electron emitting radiopharmaceutical $^{111}In$-DTPA human epidermal growth factor. J Nucl Med 2007;48:1562-70 https://doi.org/10.2967/jnumed.107.044073
  33. Frederick L, Wang XY, Eley G, James CD. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 2000;60:1383-7
  34. Anido J, Scaltriti M, Bech Serra JJ, Santiago Josefat B, Todo FR, Baselga J, et al. Biosynthesis of tumorigenic HER2 C-terminal fragments by alternative initiation of translation. EMBO J 2006; 25:3234-44 https://doi.org/10.1038/sj.emboj.7601191