Automatic Threshold Selection and Contrast Intensification Technique for Image Enhancement

영상 향상을 위한 자동 임계점 선택 및 대비 강화 기법

  • Published : 2008.04.30

Abstract

This study applies fuzzy functions to improve image quality under the assumption that uncertainty of image information due to low contrast is based on vagueness and ambiguity of the brightness pixel values. To solve the problem of low contrast images whose brightness distribution is inclined, we use the k-means algorithm as a parameter of the fuzzy function, through which automatic critical points can be found to differentiate objects from background and contrast between bright and dark points can be improved. The fuzzy function is presented at the three main stages presented to improve image quality: fuzzification, contrast enhancement and defuzzification. To measure improved image quality, we present the fuzzy index and entropy index and in comparison with those of histogram equalization technique, it shows outstanding performance.

본 논문은 저대비에 의한 영상 정보의 불확실성이 화소가 가지고 있는 명암도의 모호성과 애매성에 근거한다는 점에서 퍼지 변환 함수를 적용하여 영상 향상을 기하고자 한다. 명암도 분포가 한쪽으로 치우친 저대비 영상의 문제를 해결하고자 k-means 알고리즘을 사용하여 물체와 배경을 구분할 수 있는 자동 임계점을 찾고 이를 기준으로 영상의 밝은 부분과 어두운 부분의 대비 향상을 가져올 수 있도록 퍼지 변환 함수를 적용한다. 퍼지 변환 함수는 영상 향상을 위해 3단계-입력 영상을 퍼지 영역으로 변환시키는 퍼지화 단계와 대비를 향상시키는 대비 강화 단계 그리고 퍼지 영역을 다시 영상 영역으로 변환시키는 비퍼지화 단계로 제시된다. 향상된 영상의 성능을 평가하고자 퍼지성 지수와 엔트로피 지수를 제시하여 이를 히스토그램 균등화 기법과 비교하고 실험결과로 성능의 우수함을 보여준다.

Keywords