Effect of Metal Ions on Stabilization of Codium fragile's Pigments

금속이온이 청각 색소의 안정화에 미치는 영향

  • Lee, In-Seon (Department of Food Engineering, Mokpo National University) ;
  • Lee, Hong-yeol (Department of Hotel Culinary and Bakery, Dong-A College) ;
  • Kim, Hag-Lyeol (Department of Food Engineering, Mokpo National University) ;
  • Ko, Kang-Hee (Department of Food Engineering, Mokpo National University) ;
  • Chang, Hae-Choon (Department of Food and Nutrition, Chosun University) ;
  • Kim, In-Cheol (Department of Food Engineering, Mokpo National University)
  • 이인선 (목포대학교 공과대학 식품공학과) ;
  • 이홍렬 (동아인재대학 관광학부 호텔조리제빵) ;
  • 김학렬 (목포대학교 공과대학 식품공학과) ;
  • 고강희 (목포대학교 공과대학 식품공학과) ;
  • 장해춘 (조선대학교 식품영양학과) ;
  • 김인철 (목포대학교 공과대학 식품공학과)
  • Published : 2008.06.30

Abstract

The extraction yield and storage stability of Codium fragile pigments extracted in acetone, ethanol or methanol were studied. Methanol was the most effective solvent for pigment extraction, providing an extraction yield of $25.0{\pm}2.10\;mg/g$ (my base). As shown by TLC and HPLC analysis, chlorophyll a(0.40 mg/g) and chlorophyll b(1.94 mg/g) were the major pigment components in dried Codium fragile. The total chlorophyll content of Codium fragile stored a 40C in light or dark conditions for 30 weeks remained at 23.2% and 58.4% respectively. The effect of metal ions ($Cu^{++}$, $Zn^{++}$, $Fe^{++}$ and $Mg^{++}$) on pigment stability was analyzed Among the four metal ions $Cu^{++}$ was the most effective stabilizer of Codium fragile pigments during storage, and $Zn^{++}$ ion was the second most effective. In the presence of 1 mM $Cu^{++}$, the total chlorophyll retained in Codium fragile stored at 40C in light or dark conditions was increased to 47.0% and 88.8% after 30 weeks storage, respectively. The optimum concentrations of $Zn^{++}$ and $Cu^{++}$ for pigment stabilization under dark conditions were 0.5 mM and 0.1 mM, respectively.

해양 녹조류인 청각에 함유되어 있는 chlorophyll을 유기용매를 사용하여 추출한 후 chlorophyll의 안정성을 증가시키기 위한 조건을 확립하였다. 추출 용매로 사용된 acetone, ethanol 그리고 methanol 중 methanol이 가장 효과적이었으며, 추출 수율은 건조 중량으로 $25.0{\pm}2.10\;mg/g$ 이었다. TLC 및 HPLC 분석을 통하여 청각 색소에는 chlorophyll a 와 chlorophyll b가 주성분이며, 이들은 각각 0.40 mg/g and 1.94 mg/g의 함량으로 존재하였다. 청각 색소에 함유된 총 엽록소 함량은 빛이 있는 곳과 없는 곳에서 30주간 $40^{\circ}C$로 저장하였을 경우, 초기 양의 23.2 %와 58.4 %로 각각 잔존하였다. 황산구리, 황산아연, 황화철, 황산마그네슘으로부터 해리 된, 구리, 아연, 철, 마그네슘과 같은 금속이 이온이 색소의 저장 안정성에 미치는 영향을 분석한 결과, 구리가 가장 효과적이었으며, 아연이 그 다음으로 효과적이었다. 구리와 아연이 1 mM의 농도가 존재할 경우, 청각색소는 30주 후에, 빛이 있는 상태에서는 초기 양의 47.0%, 빛이 없는 상태에서는 88.8 %로 잔존하였다. 청각 색소를 안정화시키는 구리와 아연의 최적 농도는 빛이 없는 조건에서 구리는 0.1 mM, 아연은 0.5 mM이었다.

Keywords

References

  1. Francis, F.J. (1986) Handbook of Food Colorant Patents. Food and Nutrition Press, Westport. Ct, p. 181
  2. Natural Food Colorants : Basic Symposium on Natural Colorants (2000), Institute of Food Technologists Continuing Education Committee, Marcel Dekker Inc., USA
  3. Kroes R., Kozianowski G. (2002) Threshold of toxicological concern in food safety assessment. Toxicol. Lett., 127, 43-46 https://doi.org/10.1016/S0378-4274(01)00481-7
  4. 박영호, 장동석, 김선태. (1997) 수산가공학요론. 형설출판사, 169-197
  5. 오창근 (1996). 식품성분표(제5개정판). 농촌진흥청 농촌생활연구소, 상록사, 수원, 300-309
  6. 양한철 외 26 (1996) 식품신소재학. 한림원, 319-342
  7. 박양균 외 5 (2001) 식품화학. 영지문화사, 273-277
  8. Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I., Nagayama, T. (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother. 50, 889-893 https://doi.org/10.1093/jac/dkf222
  9. 송재철, 조원대 (1997) 가공식품과 식용색소. Bull. Food Technol., 10, 62-67
  10. Timberlake, C.F. and Henry, B.S. (1986) Plant pigments as natural food colours. Endeavpur, New Series, 10, 31-35
  11. Tan, C.T. and Francis, F.J. (1962) Effect of Processing Temperature on pigments and color of Spinach. J. Food Sci., 27, 232-241 https://doi.org/10.1111/j.1365-2621.1962.tb00086.x
  12. Clydesdale, F.M. and Francies, F.J. (1963) Chlorophyll changes in thermally processed spinach as influenced by enzyme conversion and pH adjustment. Food Technol., 22, 135-138
  13. Schanderl, S.H., Marsh, G.L. and Chichester, C.O. (1965) Color reversion in processed vegetables l. Studies on Regreened Pea Purees. J. Food Sci., 30, 312-316 https://doi.org/10.1111/j.1365-2621.1965.tb00308.x
  14. Bugkle, K.A. and Edwards, R.A. (1970) Chlorophyll, colour and changes in H.T.S.T. processed green pea puree. J. Food Technol., 5, 173-186 https://doi.org/10.1111/j.1365-2621.1970.tb01555.x
  15. Luke, F.L., and Joachim, H.E. (1990) Zine complex formation in heated vegetable purees. J. Agric. Food Chem., 38, 484-487 https://doi.org/10.1021/jf00092a033
  16. Linda H. T., and Joachim H.E. (1992) Kinetic of the formation of zinc complexes of chlorophyll derivatives, J. Agric. Food Chem., 40, 2341-2344 https://doi.org/10.1021/jf00024a004
  17. Luke, F. L., and Joachim, H.E. (1994) Chlorophyll degradation and zinc complex formation with chlorophyll derivatives in heated green vegetables, J. Agric. Food Chem, 42, 1100-1103 https://doi.org/10.1021/jf00041a010
  18. Isable Minzuez-Mosquera, Lourdes Gallardo-Guerrero, Damaso Hornero-Mendez, and Juan Garrido-Ferandez : Involvement of copper and zinc ions in green staining of table olives of variety gordal. J. Food Protect., 58, 564-569
  19. Isabel, M.M., Beatriz, G.R., and Juan G.F. (1996) Preparation of Cu(II) complexes of oxidized chlorophylls and their determination by thin-layer and high-performance liquid chromatography. J. Chromatog., 731, 261-271 https://doi.org/10.1016/0021-9673(95)01212-5
  20. Ivan, D. J., Raymond, C. W., Eleanor, G., Lillian, S.B., and Larry, A. N. (1997) Experimental formation of zinc and copper complexes of chlorophyll Derivatives in vegetable tissue by thermal Processing, J. Agric. Food Chem., 25, 149-153
  21. Canjura, F.L., Watkins, R H., and Schwartz, S.J. (1999) Color improvement and metallo-chlorophyll complexes in continuous flow aseptically processed peas, J. Food Sci., 64, 987-999 https://doi.org/10.1111/j.1365-2621.1999.tb12265.x
  22. Wright, S. W., Jeffrey, S. W. and Mantoura, R. F. C. (1997) Evaluation of methods and solvents for pigment extraction. In Phytoplankton pigments in oceanography: guidelines to modern methods. (Ed. by Jeffrey, S. W. et al.), UNESCO, Paris, pp. 261-282
  23. Ayumi T., Hisashi I., Ryouichi T., Nobuaki K.T., Kazuichi Y. and Kiyotaka O. (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll a formation from chlorophyll a. Proc. Natl. Acad. Sci. USA, 95, 12719-12723
  24. Kyoo-Jin J., Chun Hee J., Jae-Hyeung P., Yeung Joon C. (2005) Changes of food components in mesangi, gashiparea and cheonggak depending on harvest times, J. Kor. Soc. Food Sci. Nutr., 34, 687-693 https://doi.org/10.3746/jkfn.2005.34.5.687
  25. Hsiu-Ping L. Gwo-Ching G., Tung-Ming H. (2002) Phytoplankton pigment analysis by HPLC and its application in algal community investigations, Bot. Bull. Acad. Sin., 43, 283-290
  26. Alain A., Francisco R. (2000) Standard procedure for the determination of chlorophyll a by spectrometric methods. International Council for the Exploration of the Sea. Denmark, p. 1-2