고구마전분-sucrose 복합물의 레올로지 특성

Rheological Properties of Sweet Potato Starch-sucrose Composite

  • Cho, Sun-A (Department of Food Science and Technology, Dongguk University) ;
  • Yoo, Byoung-Seung (Department of Food Science and Technology, Dongguk University)
  • 발행 : 2008.04.30

초록

농도(0, 10, 20, 30%, w/w)를 달리한 sucrose가 혼합된 고구마 전분 페이스트(5% w/w)의 정상유동 특성과 동적 점탄특성에 미치는 영향에 대하여 평가하였다. 고구마전분-sucrose 복합물의 정상유동 특성은 power law 모델 및 Casson 모델로부터 레올로지 계수를 결정하였다. 일정한 온도(25$^{\circ}C$)에서 모든 시료들은 높은 항복응력과 함께 pseudoplastic과 thixotropic 거동을 나타내었다. 고구마전분-sucrose 복합물의 점조도 지수(K), 겉보기 점도(${\eta}_a$), 그리고 항복응력(${\sigma}_{oc}$) 값들은 control(0% sucrose)에 비해 10% sucrose가 더 높았으며, 또한 sucrose 농도(10-30%)가 증가함에 따라 이들 값들은 감소하였다. 팽윤력은 30% 농도에서 급격한 감소를 나타내었고, 레올로지 계수(K, ${\eta}_a$, ${\sigma}_{oc}$)값이 낮게 나타난 시료는 낮은 팽윤력을 보여주었다. 온도 의존성은 25-70$^{\circ}C$ 온도 범위에서 Arrhenius 관계식에 의하여 높은 상관관계를 나타내었다. 또한 동적 점탄특성 측정 결과에 의하면 고구마전분-sucrose 복합물은 약한 젤과 같은 거동을 보여주었으며, G'과 G" 값들은 sucrose 농도와 진동수($\omega$)가 증가함에 따라 증가하는 경향을 보였다. Cox-Merz 중첩원리는 30% sucrose 농도를 가진 고구마전분-sucrose 복합물에서 잘 적용되는 것으로 나타났다. 따라서 sucrose 첨가에 의해 고구마전분 페이스트의 레올로지 특성이 변화하게 되며, 이들 특성은 sucrose의 농도에 의해 크게 영향을 받는 것으로 나타났다.

Effects of sucrose at different concentrations (0, 10, 20, and 30%, w/w) on steady and dynamic shear rheological properties of sweet potato starch (SPS) paste (5%, w/w) were investigated. The steady shear rheological properties of SPS-sucrose composites were determined from rheological parameters based on power law and Casson flow models. At 25$^{\circ}C$ all the samples showed pseudoplastic and thixoropic behavior with high yield stress. Consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$) values of SPS-sucrose composites decreased with increasing sucrose concentration from 10% to 30%. The decrease of swelling power was observed at higher sucrose concentration (>20%) and the low swelling power yielded a lower K, ${\eta}_{a,100}$, and ${\sigma}_{oc}$ values. In temperature range of 25-70$^{\circ}C$, Arrhenius equation adequately assessed variation with temperature. Oscillatory test data showed weak gel-like behavior. Magnitudes of storage (G') and loss (G") moduli increased with an increase in sucrose concentration and frequency. The SPS-sucrose composite at 30% concentration closely followed the Cox-Merz superposition rule.

키워드

참고문헌

  1. Food News, The Korea Food Marketing Year Book. Food News, Seoul, Korea, pp. 432-438 (2007)
  2. Park JY, Ahn YS, Shin DH, Lim ST. Physicochemical properties of Korean sweet potato starches. J. Korean Soc. Food Sci. Nutr. 28: 1-8 (1999)
  3. Jung SH, Shin GJ, Choi CU. Comparison of physicochemical properties of corn, sweet potato, potato wheat and mungbean starches. Korean J. Food Sci. Technol. 23: 272-275 (1991)
  4. Chen Z. Physicochemical properties of sweet potato starches and their application in noodle products. PhD thesis, Wageningen University, Wageningen, Netherlands (2003)
  5. Mita T. Structure of potato starch pastes in the aging process by the measurement of their dynamic moduli. Carbohydr. Polym. 17: 269-276 (1992) https://doi.org/10.1016/0144-8617(92)90169-Q
  6. Morris VJ. Starch gelation and retrogradation. Trends Food Sci. Tech. 1: 2-6 (1990) https://doi.org/10.1016/0924-2244(90)90002-G
  7. Whistler RL, BeMiller JN. Guar and locust bean gums. pp. 117. 152. In: Carbohydrate Chemistry for Food Scientists. Eagan Press, St. Paul, MN. USA (1997)
  8. Grosso CRF, Rao MA. Dynamic rheology of structure development in low-methoxyl pectin+$Ca^{2+}$ sugar gels. Food Hydrocolloid. 12: 357-363 (1998) https://doi.org/10.1016/S0268-005X(98)00034-4
  9. Beak MH, Shin MS. Physicochemical properties of modified sweet potato starch by steeping. Korean J. Food Sci. Technol. 25: 736-741 (1993)
  10. AOAC. Official Methods of Analysis of AOAC. Intl 14th ed. Association of Official Analytical Chemists Inc., Arlington, VA, USA. pp. 249-255 (1984)
  11. Schoch TJ. Swelling power and solubility of granular starches. pp. 106-108. In: Methods in Carbohydrate Chemistry. Whistler RL (ed). Academic Press, NY, USA (1964)
  12. Morris ER. Polysaccharide solution properties: Origin, rheological characterization and implications for food system. pp. 132-163. In: Frontiers in Carbohydrate Research-1: Food Applications. Elsevier Applied Science Pub., NY, USA (1989)
  13. Ahmad FB, Williams PA. Rheological properties of sago starch. J. Agri. Food Chem. 29: 939-946 (1998)
  14. Yoo D, Yoo B. Rheology of rice starch-sucrose composites. Starch/ Starke 57: 254-261 (2005) https://doi.org/10.1002/star.200400356
  15. Hoover R, Senanayake N. Effect of sugars on the thermal and retrogradation properties of oat starches. J. Texture Stud. 20: 65-83 (1996)
  16. Weltman RN. Breakdown of thixotropic structure as a function of time. J. Appl. Phys. 14: 343-350 (1943) https://doi.org/10.1063/1.1714996
  17. Rao MA. Flow and functional models for rheological properties of fluid foods. pp. 27-58. In: Rheology of Fluid and Semisolid Foods. Rao MA (ed). Springer, NY, USA (2007)
  18. Chang YH, Lim ST, Yoo B. Dynamic rheology of corn starchsugar composites. J. Food Eng. 64: 521-527 (2004) https://doi.org/10.1016/j.jfoodeng.2003.08.017
  19. Yoo B, Yoo D, Kim YR, Lim ST. Effect of sugar type on rheological properties of high-methoxyl pectin gels. Food Sci. Biotechnol. 12: 316-319 (2003)
  20. Cox WP, Merz EH. Correlation of dynamic and steady viscosities. J. Polym. Sci. 28: 619-622 (1958) https://doi.org/10.1002/pol.1958.1202811812
  21. Da Silva JAL, Rao MA. Viscoelastic properties of food hydrocolloid dispersions. pp. 285-316. In: Viscoelastic Properties of Foods. Rao MA, Steffe JF (eds). Elsevier Applied Science Pub., London, UK (1992)
  22. Da Silva PMS, Oliveria JC, Rao MA. Rheological properties of heated cross-liked waxy maize starch dispersions. Int. J. Food Prop. 1: 23-34 (1998) https://doi.org/10.1080/10942919809524562