DOI QR코드

DOI QR Code

Inhibitory Effects of Four Solvent Fractions of Alnus firma on α-Amylase and α-Glucosidase.

사방오리나무 추출물의 α-amylase 및 α-glucosidase 저해활성

  • Choi, Hye-Jung (Interdisciplinary Program in Biotechnology, Changwon National University) ;
  • Jeong, Yong-Kee (Department of Biotechnology, Dong-A University, Department Cioinstitue, MILLENNIUM PROMISE CO., LTD.) ;
  • Kang, Dae-Ook (Department of Biochemistry and Health Sciences, Changwon National University) ;
  • Joo, Woo-Hong (Department of Biology, Changwon National University)
  • 최혜정 (창원대학교 대학원 생명공학협동과정) ;
  • 정영기 (동아대학교 생명공학과, (주)천년약속 바이오연구소) ;
  • 강대욱 (창원대학교 보건의과학과) ;
  • 주우홍 (창원대학교 생물학과)
  • Published : 2008.07.30

Abstract

In this study, we investigated the inhibitory effect of four solvent fractions of Alnus firma on ${\alpha}-amylase$, ${\alpha}-glucosidase$ and aldose reductase activities. The inhibitory test showed that methanol (MeOH) extract and hexane (HX) fraction strongly inhibited pork pancreatin and salivary ${\alpha}-amylase$ activity. The MeOH extract and HX fraction of Alnus firma at the concentration of 4 mg/ml inhibited more than 70% of pancreatin and salivary ${\alpha}-amylase$ activity. The inhibitory effect of fractions has different specificities against ${\alpha}-amylase$ from pancreatin and salivary. In addition, the MeOH extract and butanol (BuOH) fraction showed the highest inhibitory activity on yeast ${\alpha}-glucosidase$ at values of $IC_{50}$ $137.36\;{\mu}g/ml$ and $115.14\;{\mu}g/ml$ respectively. The MeOH extract and BuOH fraction showed the highest inhibitory activity on yeast ${\alpha}-glucosidase$ than commercial agent such as 1-deoxynorjirimycin and acarbose. Inhibition kinetics of solvent fractions showed that ${\alpha}-glucosidase$ has been inhibited noncompetitively by the MeOH, EA and BuOH fraction. The aldose reductase from human muscle cell had been inhibited strongly by the MeOH extract and EA fraction at 57.996% and 83.293% at the concentration of $50\;{\mu}g/ml$, respectively. These findings may contribute to biological significance in that ${\alpha}-amylase$, ${\alpha}-glucosidase$ and aldose reductase inhibitory compounds could be used as a functional food and a drug for the symptomatic treatment of antidiabetic disease in the future.

최근 당뇨병 환자가 급속히 증가하고 있으나, 지속적이고 적절한 치료가 어려워 당뇨병성 합병증의 발생을 증가시키고 있다. 당뇨병 발병 이후의 치료는 완치가 거의 불가능하기 때문에 증상을 개선시키고 급만성 합병증을 막는 이차적 예방에 중점을 두고 있다. 따라서 항당뇨 활성을 가지면서 식용 가능한 천연자원의 개발이 절실히 필요하다. 본 연구에서 약용식물로 알려진 사방오리나무에 대해 아직까지 보고가 없었던 항당뇨 활성에 대해 조사하였다. Pancreatin와 salivary ${\alpha}-amylase$ 에 대해 MeOH 추출물과 HX 분획물이 ${\alpha}-amylase$를 효과적으로 억제하였으며, yeast ${\alpha}-glucosidase$에 대한 억제 활성은 MeOH 추출물과 EA 분획물 그리고 BuOH 분획물의 $IC_{50}$이 각각 $137.36\;{\mu}g/ml$$171.52\;{\mu}g/ml$ 그리고 $115.14\;{\mu}g/ml$로 나타남으로써, 현재 혈당강하제로 사용되고 있는 acarbose와 1-deoxynorjirimycin보다 높은 억제 효과를 보였다. 또한 폴리올 대상 이상에 의한 당뇨병성 합병증 유발과 관련하여 Aldose reductase 억제활성을 조사한 결과, $50\;{\mu}g/ml$ 농도에서 EA 분획물과 MeOH 추출물이 각각 84.13%와 58.73%로 녹은 저해활성이 나타났다. 따라서 본 연구를 통하여 국내에 자생하는 사방오리나무 추출물로부터 부작용이 적고 혈당강하효과가 뛰어난 새로운 항당뇨 신물질을 탐색하여 산업화 하고자하며 이를 통하여 바이오 소재산업의 활성화와 바이오 식품 나아가 바이오 의약품 개발 등 다양한 측면에서 부가가치를 창출하고자 한다.

Keywords

References

  1. Adachi, Y., M. Okazaki and N. Ohno. 1994. Enhancement of cytokine production by macrophages stimulated with (1 $\rightarrow$3)-beta-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Biol. Pharm. Bull. 17, 1554-1560. https://doi.org/10.1248/bpb.17.1554
  2. Adisakwattana, S., K. Sookkongwaree, S. Roengsumran, A. Petsom, N. Ngamrojnavanich, W. Chavasiri, S. Deesamer and S. Yibchok-anun. 2004. Structure-activity relationships of trans-cinnamic acid derivatives on $\alpa$-glucosidase inhibition. Bioorg. Med. Chem. Lett. 14, 2893-2896. https://doi.org/10.1016/j.bmcl.2004.03.037
  3. Andrade-Cetto, A., H. Wiedenfeld, M. C. Revilla and I. A. Sergio. 2000. Hypoglycemic effect of Equisetum myriochaetum aerial parts on streptozotocin diabetic rats. J. Ethnopharmacol. 72, 129-133. https://doi.org/10.1016/S0378-8741(00)00218-X
  4. Bae, C. I., J. M. Gong, J. W. Oh, H. J. Kim, G. J. Oh, S. K. Park, S. G. Chung and E. H. Cho. 1997. Studies on the cytotoxic constituent of Alnus hirsuta. Yakhak Hoechi. 41, 559-564.
  5. Bantle, J. P., J. W. Rosett, A. L. Albrigh, C. M. Apovian, N. G. Clark, M. J. Frans, B. J. Hoogwerf, A. H. Lichtensterin, E. M. Davis, A. D. Mooradian and M. L. Wheeler. 2000. Nutrition recommendation and principles for people with diabetes mellitus (Position Statement). Diabetes Care 23, 843-846.
  6. Donahue, R. P., R. D. Abbott, D. M. Reed and K. Yano. 1987. Postchallenge glucose concentration and coronary heart disease in men of Japanese ancestry. Honolulu Heart Program. Diabetes 36, 689-692. https://doi.org/10.2337/diabetes.36.6.689
  7. Dvornik, D. 1987. Aldose Reductase Inhibitior, pp. 221 -323, In Porter, D. (ed.), Aldose Reductase Inhibition. An Approach to the Prevention of Diabetic complications, BIC/McGraw Hill, New York.
  8. Fischer, P. B., G. B. Karlsson, R. A Dwek and F. M. Platt. 1996. N-butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with impaired gp120 shedding and gp41 exposure. J. Virol. 70, 7153-7160.
  9. Fujita, T., T. Funako and H. Hayashi. 2004. 8- Hydroxydaidzein, and aldose reductase inhibitor from Okara fermented with Aspergillus sp. HK-388. Biosci. Biotechnol. Biochem. 68, 1588-1590. https://doi.org/10.1271/bbb.68.1588
  10. Gowri, P. M., A. K. Tiwari, A. Z. Ali and J. M. Rao. 2007. Inhibition of $\alpha$-glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. seeds. Phytother. Res. 21, 796-799. https://doi.org/10.1002/ptr.2176
  11. Gua, J., Y. S. Jin, W. Han, T. H. Shin, J. H. Sa and M. H. Wang. 2006. Studies for component analysis, antioxidative activity and $\alpha$-glucosidase inhibitory activity from Equisetum arvense. J. Korean Soc. Appl. Biol. Chem. 49, 77-81.
  12. Hanozet, G., H. P. Pircher, P. Vanni, B. Oesch and G. Semenza. 1981. An example of enzyme hysteresis. The slow and tight interaction of some fully competitive inhibitors with small intestinal sucrase. J. Biol. Chem. 256, 3703-3711.
  13. Hansawasdic, D., J. Kawabata and T. Kasai. 2000. $\alpha$ -Amylase inhibitors from Rosell (Hibiscus sabdariffa Linn.) Tea. Biosci. Biotechnol. Biochem. 64, 1041-1043. https://doi.org/10.1271/bbb.64.1041
  14. Houghton, P. J and A. Soumyanath. 2006. $\alpha$-Amylase inhibitory activity of some Malaysian plants used to treat diabetes with particular reference to Phyllanthus amarus. J. Ethnopharmacol. 107, 449-455. https://doi.org/10.1016/j.jep.2006.04.004
  15. Hyuncheol, O. H., D. H. Kim, J. H. Cho and Y. C. Kim. 2004. Hepato-protective and free radical scavendging activityes of phenilics petrosins and flavonoids isolated from Equisetum arvense. J. Ethnopharmacol. 95, 421-424. https://doi.org/10.1016/j.jep.2004.08.015
  16. Lebovitz, H. E. 1998. Postprandial hyperglycemic state: importance and consequences. Diabetes Res. Clin. Pr. 40, 27-37. https://doi.org/10.1016/S0168-8227(98)00039-4
  17. Lee, M. W., D. W. Jeong, K. H. Ahn, S. H. Toh and Y. J. Surh. 2000. Inhibition of cyclooxygenase-2 expression by diarylheptanoids from the bark of Alnus hirsuta var. sibirica. Biol. Pharm. Bull. 23, 517-518. https://doi.org/10.1248/bpb.23.517
  18. Lee, S. L., Y. C. Park and J. B. Kim. 2007. Effects of hambag mushroom (Grifola Frondosa)-powder on hyperglycemia and hyperlipemia in STZ and high fat diet-induced diavetic rats. J. Life. Sci. 17, 1387-1393. https://doi.org/10.5352/JLS.2007.17.10.1387
  19. Lee, W. Y., J. K. Ahn, Y. K. Park, S. Y. Park, Y. M. Kim and H. I. Rhee. 2004. Inhibitory effects of proanthocyanidin extracted from Distylium racemosum on $\alpha$-amylase and $\alpha$-glucosidase activities. Kor. J. Pharmacogn. 35, 271-275.
  20. Lim, C. S., C. Y. Li, Y. M. Kim, W. Y. Lee and H. I. Rhee. 2005. The Inhibitory effects of Cornus walteri extract against $\alpha$-amylase. J. Kor. Soc. Appl. Biol. Chem. 48, 103-108.
  21. Puls, W. and U. Keup. 1973. Influence of an $\alpha$-amylase inhibitor on blood glucose, serum insulin and nefa in starch loading tests in rats, dogs and man. Diabetologia. 9, 97-101. https://doi.org/10.1007/BF01230687
  22. Rhinegart, B. L., K. M. Robinson, P. S. Liu, A. J. Payne, M. E. Wheatley and S. R. Wanger. 1987. Inhibition of intestinal disaccharidase and suppression of blood glucose by a new $\alpha$-glucohydrolase inhibitor-MDL 25,637. J. Pham. Exp. Ther. 241, 915-920.
  23. Saito, N., H. Sakai, H. Sekihara and Y. Yajima. 1998. Effect of an $\alpha$-glucosidase inhibitor (voglibose), in combination with sulphonilureas, on glycaemic control in type 2 diabetes patients. J. Int. Med. Res. 26, 219-232. https://doi.org/10.1177/030006059802600501
  24. Samulitis, B. K., T. Goda, S. M. Lee and O. Koldovsky. 1987. Inhibitory mechanism of acarbose and 1-deoxynojirimycin derivatives on carbohydrates in rat small intestine. Drugs Exp. Clin. Res. 13, 517-524.
  25. Satho, K. 1978. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta. 90, 37-43. https://doi.org/10.1016/0009-8981(78)90081-5
  26. Schmidit, D. D., W. Frommer, B. Junge, L. Muller, W. Wingender, E. Truscheit and D. Schafer. 1977. alpha- Glucosidase inhibitors. New complex oligosaccharides of microbial origin. Naturwissenschaften. 64, 535-536. https://doi.org/10.1007/BF00483561
  27. Sheth, K., E. Bianchi, R. Wiedhopf and J. R. Cole. 1973. Antitumor agents from Alnus oregona. J. Pharm. Sci. 62, 139. https://doi.org/10.1002/jps.2600620129
  28. Stratton, I. M., A. I. Adler, H. A. Neil, D. R. Matthews, S. E. Manley, C. A. Cull, D. Hadden, R. C. Turner and R. R. Holman. 2000. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35), prospective observational study. Brit. Med. J. 321, 405-412. https://doi.org/10.1136/bmj.321.7258.405
  29. Tovar, J. M., O. V. Bazaldua and R. S. Poursani. 2007. LDL levels in diabetes: how low should they go. J. Fam. Pract. 56, 634-640.
  30. Yawadio, R., S. Tanimori and N. Morita. 2007. Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem. 101, 1616-1625. https://doi.org/10.1016/j.foodchem.2006.04.016

Cited by

  1. Isolation and Identification of α-Glucosidase Inhibitory Compounds, Hyperoside, and Isoquercetin from Eleutherococcus senticosus Leaves vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1858
  2. Inhibitory Effects of Sargassum thunbergii Ethanol Extract against α-amylase vol.43, pp.6, 2010, https://doi.org/10.5657/kfas.2010.43.6.648
  3. Antimicrobial and Anti-halitosis Effects of Alnus firma Extracts vol.22, pp.8, 2012, https://doi.org/10.5352/JLS.2012.22.8.1071
  4. Inhibitory Effect of the Phenolic Compounds from Geranium thunbergii on Rat Lens Aldose Reductase and Galactitol Formation vol.20, pp.4, 2012, https://doi.org/10.7783/KJMCS.2012.20.4.222
  5. Quinoline-2-carboxylic acid isolated from Ephedra pachyclada and its structural derivatives show inhibitory effects against α-glucosidase and α-amylase vol.57, pp.4, 2014, https://doi.org/10.1007/s13765-014-4156-3
  6. Natural Dyeing of Silk Fabrics with the Extract of Alnus firma Tree Branches vol.19, pp.3, 2017, https://doi.org/10.5805/SFTI.2017.19.3.337
  7. Evaluation of antioxidant, α-glucosidase inhibition and acetylcholinesteraseinhibition activities of Allium hookeri root grown in Korea and Myanmar vol.23, pp.2, 2016, https://doi.org/10.11002/kjfp.2016.23.2.239
  8. Physiological activities of natural color powders and their mixtures vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.80
  9. Antioxidative and Anti-Diabetes Activity, and Free Amino Acid and Mineral Contents of Beverage with Gugija (Lycii fructus) Extracts vol.31, pp.2, 2015, https://doi.org/10.9724/kfcs.2015.31.2.207
  10. 2-Hydroxyquinoline and Its Structural Analogs Show Antidiabetic Effects against α-Amylase and α-Glucosidase vol.58, pp.1, 2015, https://doi.org/10.3839/jabc.2015.001