DOI QR코드

DOI QR Code

Antioxidant Effects and Tyrosinase Inhibition Activity of Oriental Melon (Cucumis melo L. var makuwa Makino) Extracts.

참외 추출물의 항산화 효과 및 tyrosinase 저해활성

  • Shin, Yong-Seub (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Lee, Ji-Eun (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Yeon, Il-Kweon (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Do, Han-Woo (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Cheung, Jong-Do (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Kang, Chan-Ku (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Choi, Seng-Yong (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Youn, Sun-Joo (Biofarmer Co. Ltd) ;
  • Cho, Jun-Gu (Biofarmer Co. Ltd) ;
  • Kwoen, Dae-Jun (Department of Oriental Medicine Resource, Asia University)
  • 신용습 (경북농업기술원 성주과채류시험장) ;
  • 이지은 (경북농업기술원 성주과채류시험장) ;
  • 연일권 (경북농업기술원 성주과채류시험장) ;
  • 도한우 (경북농업기술원 성주과채류시험장) ;
  • 정종도 (경북농업기술원 성주과채류시험장) ;
  • 강찬구 (경북농업기술원 성주과채류시험장) ;
  • 최성용 (경북농업기술원 성주과채류시험장) ;
  • 윤선주 ((주)바이오파머) ;
  • 조준구 ((주)바이오파머) ;
  • 권대준 (아시아대학교 한약자원학과)
  • Published : 2008.07.30

Abstract

The biological activities of water extracts from different fruit parts, such as peel, flesh, and placenta, of oriental melon were investigated. The concentrations of total phenolic in fruit extracts were $816.37\;{\mu}g/ml$, $385.23\;{\mu}g/ml$, and $925.56\;{\mu}g/ml$, respectively. Whereas the total flavonoid content in the peel extracts was $231.21\;{\mu}g/ml$, those in the extract of flesh and placenta were $8.16\;{\mu}g/ml$ and $36.07\;{\mu}g/ml$, respectively. The DPPH free radical scavenging activity of each fruit extract at 10,000 ppm was 34.84% for peel, 10.70% for placenta and 9.26% flesh. The ABTS radical cation decolorizing activity of each fruit extract at 10,000 ppm was in fruit extracts were 72.92% for peel, 48.0% for flesh and 74.31% for placenta. In addition, xanthine oxidase inhibitory activity, ${\alpha}-Glucosidase$ inhibition activity, and tyrosinase inhibition activity of the peel extracts appeared to be higher than those of placenta and flesh. Taken together, these results indicated that the peel part of oriental melon contained higher level of total flavonoid content, and several physiological activities including antioxidation, ${\alpha}-Glucosidase$ inhibition activity, and tyrosinase inhibition activity than did the flesh and placenta parts, and suggested that the peel might have a potential to be applicable as a source for functional foods.

참외의 껍질에 포함되어 있는 성분을 이용할 수 있는 껍질째 먹는 참외 생산 및 식품소재로 활용하기 위해 참외를 부위별로 항산화 활성을 조사하였다. 각 부위별 참외의 추출물의 총 phenol 함량은 태좌가 $925.56\;{\mu}g/ml$로 가장 높게 나타났으며, 껍질이 $816.37\;{\mu}g/ml$, 과육 순으로 나타났고, 총 flavonoid성 함량은 껍질이 $231.21\;{\mu}g/ml$로 가장 높게 나타났으며, 태좌가 $36.07\;{\mu}g/ml$, 과육 순으로 나타났다. 태좌와 껍질의 총 phenol 함량은 유사하였지만, flavonoid 성 함량은 껍질부분이 가장 높게 나타났다. 참외의 항산화 효과는 전자공여능이 껍질, 과육과 태좌가 10,000 ppm에서 각각 34.84%, 9.26%, 10.70%으로 나타났고, ABTS는 각각 72.92%, 48.0%와 74.31%로 나타났다. Xanthine oxidase의 저해활성의 경우 10,000 ppm에서는 껍질 부위가 11.21%의 활성을 보였고, 태좌와 과육은 미약한 효과를 나타내었다. ${\alpha}-Glucosidase$ 저해 활성은 10,000 ppm에서는 껍질 부위가 27.35%로 태좌와 과육에 비해 높은 저해효과를 나타내었고, 태좌와 과육은 미약한 저해활성을 나타내었다. Tyrosinase 저해활성은 10,000 ppm에서 껍질 부위가 17.71%, 과육이 16.81%, 태좌가 12.59%의 순으로 나타났다. 이러한 결과들은 껍질부분의 경우, 총 flavonoid성 함량 및 항산화 활성, ${\alpha}-Glucosidase$ 저해활성, 그리고, Tyrosinase 저해활성이 과육과 태좌부위보다 높으며 식품소재로 활용이 가능성이 높음을 시사한다.

Keywords

References

  1. Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1202. https://doi.org/10.1038/1811199a0
  2. Gua, J., Y. S. Jin, W. Han, T. H. shim, J. H. Sa and M. H. Wang. 2006. Studies for component analysis, antioxidantive activity and $\alpa$-Glucosidase inhibitory activity from Equisetum arvense. J. Kor. Soc. Appl. Biol. Chem. 49, 77-81.
  3. Hatano, T., T. Yasuhara, T. Fukuda, T. Noro and T. Okuda. 1989. Phenolic constituents of Licorce. II. structures of Licopyranocoumarin, Licoaryl- coumarin and Glisoflavone, and inhibitory effects of Licorice phenolics on xanthine oxidase. Chem. Pharm. Bull. 37, 3005-3009. https://doi.org/10.1248/cpb.37.3005
  4. Jones, P. H. 1973. Iodinine as an antihypertensive agent. Ibid. 3, 679
  5. Kang, Y. H., Y. K. Park and G. D. Lee. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J. Food Sci. Technol. 28, 232.
  6. Kelley, W. N. and J. B. 1974. Wyngarden: Enzymology of gout. Adv. Enzymol. 41, 23-28
  7. Kuhnau, J. 1976. The flavonoids a class of semiessential food components; their role in human nutrition. World Rev. Nutr. diet. 24, 117-120.
  8. Laskin, J. D. and L. A. Piccinini. 1986. Tyrosinase isozyme heterogeneity in differentiating B-16/C3 melanoma. J. Biol. Chem. 61, 16626.
  9. Lee, G. H., S. K. Kim and M. H. Lee. 2004. Monitoring of organoleptic and physical properties on preparation of oriental melon jelly. J. Korean Soc. Food Sci. Nutr. 33, 1373-1380. https://doi.org/10.3746/jkfn.2004.33.8.1373
  10. Lee, G. H., S. K. Kim and M. H. Lee. 2005. Quality change of beverage containing muskmelon vinegar and concentrated muskmelon juice during storage. Kor. J. Food preserv. 12, 223-229.
  11. Lee, H. J. and J. G. Kim. 2000. The changes of components and texture out of carrot and radish pickles during the storage. Kor. J. Food Nutr. 13, 563-569.
  12. Pellegrin, N., R. Roberta, Y. Min and R. E. Catherine. 1998. Screening of dietary carotenoids and carotenoid-rich fruit extract for antioxidant activites applying 2,2-azinobis( 3-ethylenbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method Enzymol. 299, 379-389.
  13. Rhee, K. S., Y. A. Ziprin,vand and K. C. Rhee. 1981. Antioxidant activity of methanolic extracts of various oilseed protein ingredient. Korean J. Food Sci. 46, 75-81.
  14. Rhew, T. H. 1985. Food, nutrition and cancer. J. Kor. Soc. Food Nutr. 14, 305-313.
  15. Ronsivalli, L. J. and E. R. Vieira. 1992. Elementary food science. pp. 338-344. AVI Book, New York.
  16. Seiberg, M., L. Babiarz and C. B. Lin. 2003. Il-41 The PAR-2 pathway is differentially expressed in skin of color. Pigment Cell Res. 16, 591.
  17. Shin, Y. S., S. D. Park, H. W. Do, S. G. Bae, J. H. Kim and B. S. Kim. 2005. Effect of double layer nonwoven fabrics on the growth, quality and yield of oriental melon (Cucumis melo L. var. makuwa Mak.) under vinylhouse. J. Bio-Env. Con. 14, 22-28.
  18. Stirpe, F. and E. D. Corte. 1969. The regulation of rat liver xanthine oxidase. J. Biol. Chem. 244, 3855-3861.
  19. Storch, H. and E. Ferber. 1988. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Anal. Biochem. 169, 262-267. https://doi.org/10.1016/0003-2697(88)90283-7
  20. Yagi, A., T. Kanbara and N. Morinobu. 1986. The effect of tyrosinase inhibition for Aloe. Planta Med. 3981, 517-519.

Cited by

  1. Hot water extract of oriental melon leaf promotes hair growth and prolongs anagen hair cycle: In vivo and in vitro evaluation vol.25, pp.2, 2016, https://doi.org/10.1007/s10068-016-0080-0
  2. subtropical fruits vol.22, pp.4, 2015, https://doi.org/10.11002/kjfp.2015.22.4.577
  3. Phenotypic profiling and gene expression analyses for aromatic and volatile compounds in Chamoes (Cucumis melo) vol.41, pp.5, 2014, https://doi.org/10.1007/s11033-014-3211-9
  4. Carotenoid Biosynthesis in Oriental Melon (Cucumis melo L. var. makuwa) vol.8, pp.2, 2019, https://doi.org/10.3390/foods8020077