DOI QR코드

DOI QR Code

Biological Activity of Recombinant Human Granulocyte Colony-Stimulating Factor and Isolation of the Somatic Cell Transfected EGFP-hG-CSF Gene

유전자 재조합 인간의 G-CSF의 생리활성과 EGFP-hG-CSF유전자가 도입된 체세포의 분리

  • Park, Jong-Ju (Animal Biotechnology, The Graduate School of Bio. & Information Technology, Institute of Genetic Engineering, Hankyong National University) ;
  • Min, Kwan-Sik (Animal Biotechnology, The Graduate School of Bio. & Information Technology, Institute of Genetic Engineering, Hankyong National University)
  • 박종주 (한경대학교 생물환경정보통신전문대학원, 유전공학연구소, 동물생명공학) ;
  • 민관식 (한경대학교 생물환경정보통신전문대학원, 유전공학연구소, 동물생명공학)
  • Published : 2008.07.30

Abstract

To investigate the biological activity of recombinant human granulocyte colony-stimulating factor (rec-hG-CSF) in mammalian cells, hG-CSF gene was cloned using the eDNA extracted from the human squamous carcinoma cell lines and rec-hG-CSF was produced in CHO cell lines. To analyze the biological activity in vivo, the rec-hG-CSF protein was injected into mice subcutaneously on days 0 and 2. Blood was withdrawn for white blood cell (WBC) determination 5 days after the first injection. WBC values were found to have increased significantly. A pEGFP-mUII-hG-CSF vector was transfected into somatic cell lines isolated from bovine fetal cells. The colony expressing EGFP signals was observed with a confocal microscope. These data suggest that the rec-hG-CSF produced in this study has potent activity in vivo. Thus, the results of this biological activity show that rec-hG-CSF can be enhanced considerably by genetic engineering that affects potential activity, including mutations, which add the oligosaccharide chain and construct double-fusion proteins. A pEGFP-mUII-hG-CSF vector can be utilized for the production of cloned transgenic livestock.

유전자재조합 hG-CSF의 생리활성을 분석하기 위하여 편상의 암세포로부터 분리되어진 cDNA를 이용하여 hG-CSF 유전자를 분리하여 동물세포(CHO cell lines)를 이용하여 재조합 단백질을 생산하였다. 재조합 단백질의 체내 생리활성을 분석하기 위하여0일과 2일에 피하주사 후 5일에 혈액을 채취하여 백혈구 수를 분석하였다. 투여 전과 비교하여 5일째에 백혈구 수는 현저하게 증가하였다. 또한, pEGFP-mUII-hG-CSF벡터를 소 태아로부터 분리되어진 체세포에 형질전환을 시켜서, EGFP signal을 나타내는 세포를 confocal를 이용하여 분리하여 수립하였다. 따라서, 이러한 결과는 유전자재조합 hG-CSF는 체내에서 강력한 생리활성을 나타내며, 또한 당쇄가 첨가되어지고 이중으로 연결되어진 새로운 돌연변이체를 포함하여 고 활성 재조합체의 생산이 가능할 것으로 보이며, pEGFP-mUII-hG-CSF벡터는 복제 형질전환 가축 생산을 위하여 유용하게 사용되어질 것으로 사료된다.

Keywords

References

  1. Adachi, Y., J. Imagawa, Y. Suzuki, K. Yogo, M. Fukazawa, O. Kuromaru and Y. Saito. 2004. G-CSF treatment increases side population cell infiltration after myocardial infarction in mice. J. Mol. Cell Cardiol. 36, 707-710. https://doi.org/10.1016/j.yjmcc.2004.03.005
  2. Demetri, G. D. and J. D. Griffin. 1991. Granulocyte colonystimulating factor and its receptor. Blood 78, 2791-808.
  3. Druhan, L. J., J. Ai, P. Massullo, T. Kindwall-Keller, M. A. Ranalli and B. R. Avalos. 2005. Novel mechanism of G-CSF refractoriness in patients with severe congenital neutropenia. Blood 105, 584-591. https://doi.org/10.1182/blood-2004-07-2613
  4. Harada, M., Y. Qin, H. Takano, T. Minamino, Y. Zou, H. Toko, M. Ohtsuka, K. Matsuura, M. Sano, J. Nishi, K. Iwanaga, H. Akazawa, T. Kunieda, W. Zhu, H. Hasegawa, K. Kunisada, T. Nagai, H. Nakaya, K. Yamauchi-Takihara and T. Komuro. 2005. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat. Med. 11, 305-311. https://doi.org/10.1038/nm1199
  5. Jilma, B., P. Stohlawetz, T. Pernerstorfer, H. G. Eichler, C. Mullner and S. Kapiotis. 1988. Glucocorticoids dose-dependently increase plasma levels of granulocyte colony stimulating factor in man. J. Clin. Endocrinol. Metab. 83, 1037-1040.
  6. Kaneko, T., Y. Ogawa and Y. Hirata. 1990. Agranulocytosis associated with granular lymphocytic leukemia: improvement of periferal blood granulocute count with human recombinant granulocyte colony-stimulating factor (G-CSF). Br. J. Haematol. 74, 121-122. https://doi.org/10.1111/j.1365-2141.1990.tb02550.x
  7. Kanellakis, P., N. J. Slater, X. J. Du, A. Bobik and D. J. Curtis. 2006. Granulocyte colony-stimulating factor and stem cell factor improve endogenous repair after myocardial infarction. Cardiovasc. Res. 70, 117-125. https://doi.org/10.1016/j.cardiores.2006.01.005
  8. Kim, M. O., S. H. Kim, S. R. Lee, K. S. Kim, K. S. Min, H. T. Lee, S. J. Kim and Z. Y. Ryoo. 2006. Transgene expression of biological active recombinant human granulocytecolony stimulating factor (hG-CSF) into mouse urine. Life Sci. 78, 1003-1009. https://doi.org/10.1016/j.lfs.2005.06.011
  9. Kuhlmann, M. T., P. Kirchhof, R. Klocke, L. Hasib, J. Stypmann, L. Fabritz, M. Stelljes, W. Tian, M. Zwiener, M.Mueller, J. Kienast, G. Breithardt and S. Nikol. 2006. G-CSF/SCF reduces inducible arrhythmias in the infracted heart potentially via increased connexin-43 expression and arteriogenesis. J. Exp. Med. 203, 87-97. https://doi.org/10.1084/jem.20051151
  10. Layton, J. E., G. Shimamoto, T. Osslund, A. Hammacher, D. K. Smith, H. R. Treutlein and T. Boone. 1999. Interaction of granulocyte colony-stimulating factor (G-CSF) with its receptor. Evidence that Glu19 of G-CSF interacts with Arg288 of the receptor. J. Biol. Chem. 274, 17445-17451. https://doi.org/10.1074/jbc.274.25.17445
  11. Lehrke, S., R. Mazhari, D. J. Durand, M. Zheng, D. Bedja, J. M. Zimmet, K. H. Schuleri, A. S. Chi, K. L. Gabrielson and J. M. Hare. 2006. Aging impairs the beneficial effect of granulocyte colony-stimulating factor and stem cell factor on post-myocardial infarction remodeling. Circ. Res. 99, 553-560. https://doi.org/10.1161/01.RES.0000238375.88582.d8
  12. Lieschke, G. J., D. Grail, G. Hodgson, D. Metcalf, E. Stanley, C. Cheers, K. J. Fowler, S. Basu, Y. F. Zhan and A. R. Dunn. 1994. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737-1746.
  13. Metcalf, D. 1989. Haemopoietic growth factors 2; Clinical application. Lancet 1, 885-887.
  14. Metcalf, D. 1986. The molecular biology and function of the granulocyte-macrophage colony-stimulating factors. Blood 67, 257-267.
  15. Min, K. S., T. Hiyama, H. H. Seong, N. Hattori, S. Tanaka and K. Shiota. 2004. Biological activities of tethered chorionic gonadotropin (eCG) and its deglycosylated mutants. J. Reprod. Dev. 50, 297-304. https://doi.org/10.1262/jrd.50.297
  16. Min, K. S., M. H. Kang, J. T. Yoon, H. J. Jin, H. H. Seong, Y. M. Chang, H. J. Chung, S. J. Oh, S. G. Yun and W. K. Chang. 2003. Production of biological active single chain bovine LH and FSH. Asian-Aust. J. Anim. Sci. 16, 498-503. https://doi.org/10.5713/ajas.2003.498
  17. Nagata, S., M. Tsuchiya, S. Asano, Y. Kaziro, T. Yamazaki, O. Yamamoto, Y. Hirata, N. Kubota, M. Oheda and H. Nomura. 1986a. Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319, 415-418. https://doi.org/10.1038/319415a0
  18. Nagata, S., M. Tsuchiya, S. Asano, O. Yamamoto, Y. Hirata, N. Kubota, M. Oheda, H. Nomura and T. Yamazaki. 1986b. The chromosomal gene structure and two mRNAs for human granulocyte colony-stimulating factor. EMBO J. 5, 575-581.
  19. Saneyoshi, T., K. S. Min, X. J. Ma, Y. Nambo, T. Hiyama, S. Tanaka and K. Shiota. 2001. Equine follicle-stimulating hormone: Molecular cloning of $\beta$-subunit and biological role of the asparagine-linked oligosaccharide at asparagine 56 of $\alpha$-subunit. Biol. Reprod. 65, 1686-1690. https://doi.org/10.1095/biolreprod65.6.1686
  20. Ward, A. C., L. Smith, J. P. de Koning, Y. van Aesch and I. P. Touw. 1999. Multiple signals mediate proliferation, differentiation, and survival from the granulocyte colonystimulating factor receptor in myeloid 32D Cells. J. Biol. Chem. 274, 14956-14962. https://doi.org/10.1074/jbc.274.21.14956