Abstract
This paper presents a technique for estimating discharge rating curve parameters. In typical practical applications, the original non-linear rating curve is transformed into a simple linear regression model by log-transforming the measurement without examining the effect of log transformation. The model of pseudo-likelihood estimation is developed in this study to deal with heteroscedasticity of residuals in the original non-linear model. The parameters of rating curves and variance functions of errors are simultaneously estimated by the pseudo-likelihood estimation(P-LE) method. Simulated annealing, a global optimization technique, is adapted to minimize the log likelihood of the weighted residuals. The P-LE model was then applied to a hypothetical site where stage-discharge data were generated by incorporating various errors. Results of the P-LE model show reduced error values and narrower confidence intervals than those of the common log-transform linear least squares(LT-LR) model. Also, the limit of water levels for segmentation of discharge rating curve is estimated in the process of P-LE using the Heaviside function. Finally, model performance of the conventional log-transformed linear regression and the developed model, P-LE are computed and compared. After statistical simulation, the developed method is then applied to the real data sets from 5 gauge stations in the Geum River basin. It can be suggested that this developed strategy is applied to real sites to successfully determine weights taking into account error distributions from the observed discharge data.
수위-유량 관계 곡선을 나타내는 곡선식에 포함되어 있는 매개변수의 추정을 위해 많이 사용되는 로그선형 회귀분석은 잔차의 비등분산성(heteroscedasticity)을 고려하지 못하므로 본 연구에서는 의사우도추정법(pseudolikelihood estimation, P-LE)에 의해 분산함수를 추정하고 이와 함께 회귀계수를 추정할 수 있는 방법을 제시하였다. 이 과정에서 제시된 회귀잔차를 최소화하기 위하여 SA(simulated annealing)이라는 전역 최적화 알고리즘을 적용하였다. 또한 수위-유량 관계 곡선은 단면 등의 영향으로 인해 구간에 따라 각각 다르게 구축되어져야 하므로 이를 보다 객관적으로 판단하고 분리 위치를 추정하기 위하여 Heaviside 함수를 의사우도함수에 포함시켜 결과를 추정하도록 하였으며, 2개의 구간을 가지는 유량자료를 이용하여 제시된 방법의 합리성을 통계적으로 실험하였다. 이와 같이 통계적 실험을 통해 제시된 방법들이 기존 방법과 비교하여 가질 수 있는 장점을 파악하였으며, 제시된 방법들을 금강유역 5개 지점에서 대해 수행하여 효율성을 검증하였다.