DOI QR코드

DOI QR Code

Improvement of Rating Curve Fitting Considering Variance Function with Pseudo-likelihood Estimation

의사우도추정법에 의한 분산함수를 고려한 수위-유량 관계 곡선 산정법 개선

  • Lee, Woo-Seok (Investigation and Planning Department, Korea Water Resources Corporation) ;
  • Kim, Sang-Ug (SNU BK21 SIR Group, Seoul National University) ;
  • Chung, Eun-Sung (Engineering Research Institute, Seoul National University) ;
  • Lee, Kil-Seong (Dept. of Civil and Environmental Engineering, Seoul National University)
  • 이우석 (한국수자원공사 조사관리처) ;
  • 김상욱 (서울대학교 BK21 안전하고 지속가능한 사회기반건설 사업단) ;
  • 정은성 (서울대학교 공학연구소) ;
  • 이길성 (서울대학교 공과대학 건설.환경공학부)
  • Published : 2008.08.31

Abstract

This paper presents a technique for estimating discharge rating curve parameters. In typical practical applications, the original non-linear rating curve is transformed into a simple linear regression model by log-transforming the measurement without examining the effect of log transformation. The model of pseudo-likelihood estimation is developed in this study to deal with heteroscedasticity of residuals in the original non-linear model. The parameters of rating curves and variance functions of errors are simultaneously estimated by the pseudo-likelihood estimation(P-LE) method. Simulated annealing, a global optimization technique, is adapted to minimize the log likelihood of the weighted residuals. The P-LE model was then applied to a hypothetical site where stage-discharge data were generated by incorporating various errors. Results of the P-LE model show reduced error values and narrower confidence intervals than those of the common log-transform linear least squares(LT-LR) model. Also, the limit of water levels for segmentation of discharge rating curve is estimated in the process of P-LE using the Heaviside function. Finally, model performance of the conventional log-transformed linear regression and the developed model, P-LE are computed and compared. After statistical simulation, the developed method is then applied to the real data sets from 5 gauge stations in the Geum River basin. It can be suggested that this developed strategy is applied to real sites to successfully determine weights taking into account error distributions from the observed discharge data.

수위-유량 관계 곡선을 나타내는 곡선식에 포함되어 있는 매개변수의 추정을 위해 많이 사용되는 로그선형 회귀분석은 잔차의 비등분산성(heteroscedasticity)을 고려하지 못하므로 본 연구에서는 의사우도추정법(pseudolikelihood estimation, P-LE)에 의해 분산함수를 추정하고 이와 함께 회귀계수를 추정할 수 있는 방법을 제시하였다. 이 과정에서 제시된 회귀잔차를 최소화하기 위하여 SA(simulated annealing)이라는 전역 최적화 알고리즘을 적용하였다. 또한 수위-유량 관계 곡선은 단면 등의 영향으로 인해 구간에 따라 각각 다르게 구축되어져야 하므로 이를 보다 객관적으로 판단하고 분리 위치를 추정하기 위하여 Heaviside 함수를 의사우도함수에 포함시켜 결과를 추정하도록 하였으며, 2개의 구간을 가지는 유량자료를 이용하여 제시된 방법의 합리성을 통계적으로 실험하였다. 이와 같이 통계적 실험을 통해 제시된 방법들이 기존 방법과 비교하여 가질 수 있는 장점을 파악하였으며, 제시된 방법들을 금강유역 5개 지점에서 대해 수행하여 효율성을 검증하였다.

Keywords

References

  1. 건설교통부 (2004). 수문관측매뉴얼
  2. 김원, 윤광석, 이을래, 김치영, 김동구, 차준호, 박은희 (2004). 하천 유량측정 지침, 수자원의 지속적 확보 기술개발 사업단
  3. 이길성 (2001). 수자원 분석시스템 구축기법에 관한 연구보고서, 한국수자원공사
  4. 이길성 (1996). 낙동강 수계 실시간 최적 저수관리 시스템 개발 (분석모델 부문) 보고서, 한국수자원공사
  5. 한국수자원공사 (2001). HYMOS, pp. 8.8-8.12
  6. 한국수자원공사 (2006). 2005 수문자료집
  7. 한국수자원공사 (2007). 2006 수문자료집
  8. Akaike, H. (1974). “A new look at the statistical model identification.” IEEE Trans. Autom. Control AC-19, pp. 716-723 https://doi.org/10.1109/TAC.1974.1100705
  9. Carroll, R.J., and Ruppert. D. (1988). Transformation and Weighting in Regression. Chapman & Hall. N.Y
  10. DeGagne, M.P.J., Douglas, G.G., Hudson, H.R, and Simonovic, S.P. (1996). “A decision support system for the analysis and use of stagedischarge rating curves.” Journal of Hydrology, Vol. 184, pp. 225-241 https://doi.org/10.1016/0022-1694(95)02973-7
  11. Goffe, W.L. (1996). “SIMANN: A global optimization algorithm using simulated annealing.” Studies in Nonlinear Dynamics and Econometrics, Vol. 1, No. 3, The MIT Press, M.A https://doi.org/10.2202/1558-3708.1020
  12. Herschy, R.W. (1985). Streamflow Measurement. Elsevier Applied Science Publishers. M.O
  13. ISO (1998). “Determination of the stage-discharge relationship.” Measurement of liquid flow in open channels-Part 2, ISO standard 1100-2, International Organization of Standards, pp. 133-153
  14. Kennedy, E. J. (1989). “Computation of continuous records of streamflow.” Techniques of Water-Resources Investigations of the United States Geological Survey, USGS
  15. Kirkpatrick, S., Gellat, C.D., and Vecchi, M.P. (1983). “Optimization by simulated annealing.” Science, Vol. 220, pp. 671-680 https://doi.org/10.1126/science.220.4598.671
  16. Lambie, J.C. (1978). “Measurement of flowvelocity-area methods.” In: Hershcy RW, (Ed.), Hydrometry: Principles and Practices, Wiley, Chichester, Chapter 1
  17. Mosley, M.P., and McKerchar, A.I. (1993). “Streamflow.” Handbook of Hydrology, Chap. 8, McGraw-Hill, N.Y
  18. Petersen-Overleir, A. (2004). “Accounting for heteroscedasticity in rating curve estimates.” Journal of Hydrology, Vol. 292. pp. 173-181 https://doi.org/10.1016/j.jhydrol.2003.12.024
  19. Petersen-Øverleir, A., and Reitan, T. (2005). “Objective segmentation in compound rating curves.” Journal of Hydrology, Vol. 311, pp.188-201 https://doi.org/10.1016/j.jhydrol.2005.01.016
  20. Rantz, S.E. (1982). “Measurement and computation of streamflow.” Vol. II. Computation of Discharge, USGS Water Supply Report 2175, Washington
  21. Sauer, V.B., Meyer, R.W. (1992). Determination of error in individual discharge measurements. USGS Open-file Report, pp. 92-144, USGS
  22. Schwartz, G. (1979). “Estimating the dimension of a model.” Ann. Statist., Vol. 6, pp. 461-464 https://doi.org/10.1214/aos/1176344136
  23. Seber, G.A.F. and Wild, C.J. (1989). Nonlinear Regression. John Wiley & Sons, Inc., N.Y
  24. WMO (1994). Guide to Hydrological Practices. 5th Ed., pp. 170-172

Cited by

  1. Prediction of Stage Discharge Curve and Lateral Distribution of Unit Discharge in an Arbitrary Cross Section Channel with Floodplain Vegetation vol.44, pp.2, 2011, https://doi.org/10.3741/JKWRA.2011.44.2.157
  2. The estimation of discharge in unsteady flow conditions, showing a characteristic loop form vol.73, pp.8, 2015, https://doi.org/10.1007/s12665-014-3731-6
  3. A development of rating-curve using Bayesian Multi-Segmented model vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.253