DOI QR코드

DOI QR Code

POSITIVE IMPLICATIVE SMARANDACHE BCC-IDEALS IN SMARANDACHE BCC-ALGEBRAS

  • Jun, Young-Bae (Department of Mathematics Education (and RINS) Gyeongsang National University) ;
  • Song, Seok-Zun (Department of Mathematics Cheju National University) ;
  • Kang, Kyung-Tae (Department of Mathematics Cheju National University)
  • Received : 2008.06.18
  • Accepted : 2008.07.15
  • Published : 2008.09.25

Abstract

The notion of positive implicative Smarandache BCC-ideals is introduced, and related properties are investigated. Relations between Smarandache BCC-ideals and positive implicative Smarandache BCC-ideals are discussed. The extension property of a positive implicative Smarandache BCC-ideals is given.

Keywords

References

  1. W. A. Dudek, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Academia Sinica 20 (1992), 129-136.
  2. W. A. Dudek, On proper BCC-algebras, Bull. lnst. Math. Academia Sinica 20(1992), 137-150.
  3. W. A. Dudek, On constructions of BCC-algebras, Selected Papers on BCK and BCI-algebras 1 (1992), 93-96. Shaanxi Scientific and Technological Press, Xian, China.
  4. W. A. Dudek and X. H. Zhang, On ideals and congruences in BCC-algebras, Czech. Math. J. 48(123) (1998), 21-29. https://doi.org/10.1023/A:1022407325810
  5. J. Hao, Ideal theory of BCC-algebras, Sci. Math. 1 (1998), no. 3, 373-381.
  6. Y. B. Jun, Smarandache BCl-algebras, Sci. Math. Japon. Online e-2005 (2005), 271-276.
  7. Y. B. Jun, Smarandache BCC-algebras, Inter. J. Math. Math. Sci. 2005 (2005), no. 18, 2855-2861. https://doi.org/10.1155/IJMMS.2005.2855
  8. Y. Komori, The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 391-394.
  9. J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa Co. Seoul, Korea (1994).
  10. R. Padilla, Smarandache algebraic structures, Bull. Pure Appl. Sci., Delhi, 17E(1998), no. 1, 119-121;http://www.gallup.unm.edu/smarandache/alg-s-tx.txt.
  11. W. B. Vasantha Kandasamy, Smarandache groupoids, http://www.gallup.unm.edu/ smarandache/Groupoids.pdf.
  12. A. Wronski, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213.