DOI QR코드

DOI QR Code

Immunomodulatory Actions of Lysophosphatidylcholine

  • Hong, Chang-Won (Department of Pharmacology, Institute of Natural Medicine, Infectious Disease Medical Research Center, College of Medicine, Hallym University) ;
  • Song, Dong-Keun (Department of Pharmacology, Institute of Natural Medicine, Infectious Disease Medical Research Center, College of Medicine, Hallym University)
  • Published : 2008.06.30

Abstract

Lysophosphatidylcholine (LPC) is an endogenous phospholipid. LPC has various stimulating or modulating activities on immune cells, including lymphocytes, monocytes/macrophages and neutrophils. Studies generally revealed pro-inflammatory activities of LPC, but accumulating evidence indicates that LPC has also anti-inflammatory actions. Here we summarize immunomodulatory actions of LPC.

Keywords

References

  1. Asaoka, Y., Oka, M., Yoshida, K. and Nishizuka, Y. (1991). Lysophosphatidylcholine as a possible second messenger synergistic to diacylglycerol and calcium ion for T-lymphocyte activation. Biochem Biophys Res Commun. 178(3), 1378- 1385 https://doi.org/10.1016/0006-291X(91)91046-F
  2. Asaoka, Y., Oka, M., Yoshida, K., Sasaki, Y. and Nishizuka, Y. (1992). Role of lysophosphatidylcholine in T-lymphocyte activation: involvement of phospholipase A2 in signal transduction through protein kinase C. Proc Natl Acad Sci USA. 89(14), 6447-6451 https://doi.org/10.1073/pnas.89.14.6447
  3. Bauldry, S. A. and Wooten, R. E. (1997). Induction of cytosolic phospholipase A2 activity by phosphatidic acid and diglycerides in permeabilized human neutrophils: interrelationship between phospholipases D and A2. Biochem J. 322 (Pt 2), 353-363 https://doi.org/10.1042/bj3220353
  4. Biffl, W. L., Carnaggio, R., Moore, E. E., Ciesla, D. J., Johnson, J. L. and Silliman, C. C. (2003). Clinically relevant hypertonicity prevents stored blood- and lipid-mediated delayed neutrophil apoptosis independent of p38 MAPK or caspase-3 activation. Surgery. 134(1), 86-91 https://doi.org/10.1067/msy.2003.178
  5. Chen, G., Li, J., Qiang, X., Czura, C. J., Ochani, M., Ochani, K., Ulloa, L., Yang, H., Tracey, K. J., Wang, P., Sama, A. E. and Wang, H. (2005). Suppression of HMGB1 release by stearoyl lysophosphatidylcholine:an additional mechanism for its therapeutic effects in experimental sepsis. J Lipid Res. 46(4), 623-627 https://doi.org/10.1194/jlr.C400018-JLR200
  6. Coutant, F., Agaugue, S., Perrin-Cocon, L., Andre, P. and Lotteau, V. (2004). Sensing environmental lipids by dendritic cell modulates its function. J Immunol. 172(1), 54-60 https://doi.org/10.4049/jimmunol.172.1.54
  7. Coutant, F., Perrin-Cocon, L., Agaugué, S., Delair, T., Andre, P. and Lotteau, V. (2002). Mature dendritic cell generation promoted by lysophosphatidylcholine. J Immunol. 169(4), 1688- 1695 https://doi.org/10.4049/jimmunol.169.4.1688
  8. De Vries, H. E., Ronken, E., Reinders, J. H., Buchner, B., Van Berkel, T. J. and Kuiper, J. (1998). Acute effects of oxidized low density lipoprotein on metabolic responses in macrophages. FASEB J. 12(1), 111-118 https://doi.org/10.1096/fasebj.12.1.111
  9. Drobnik, W., Liebisch, G., Audebert, F. X., Frohlich, D., Gluck, T., Vogel, P., Rothe, G. and Schmitz, G. (2003). Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res. 44(4), 754-761 https://doi.org/10.1194/jlr.M200401-JLR200
  10. Engelmann, B., Zieseniss, S., Brand, K., Page, S., Lentschat, A., Ulmer, A. J. and Gerlach, E. (1999). Tissue factor expression of human monocytes is suppressed by lysophosphatidylcholine. Arterioscler Thromb Vasc Biol. 19(1), 47-53 https://doi.org/10.1161/01.ATV.19.1.47
  11. Englberger, W., Bitter-Suermann, D. and Hadding, U. (1987). Influence of lysophospholipids and PAF on the oxidative burst of PMNL. Int J Immunopharmacol. 9(3), 275-282 https://doi.org/10.1016/0192-0561(87)90051-8
  12. Frasch, S. C., Zemski-Berry, K., Murphy, R. C., Borregaard, N., Henson, P. M. and Bratton, D. L. (2007). Lysophospholipids of different classes mobilize neutrophil secretory vesicles and induce redundant signaling through G2A. J Immunol. 178(10), 6540-6548 https://doi.org/10.4049/jimmunol.178.10.6540
  13. Ginsburg, I., Ward, P. A. and Varani, J. (1989). Lysophosphatides enhance superoxide responses of stimulated human neutrophils. Inflammation. 13(2), 163-174 https://doi.org/10.1007/BF00924787
  14. Gomez-Munoz, A., O'Brien, L., Hundal, R. and Steinbrecher, U. P. (1999). Lysophosphatidylcholine stimulates phospholipase D activity in mouse peritoneal macrophages. J Lipid Res. 40(6), 988-993
  15. Han, K. H., Hong, K. H., Ko, J., Rhee, K. S., Hong, M. K., Kim, J. J., Kim, Y. H. and Park, S. J. (2004). Lysophosphatidylcholine up-regulates CXCR4 chemokine receptor expression in human CD4 T cells. Journal of Leukocyte Biology. 76(1), 195-202 https://doi.org/10.1189/jlb.1103563
  16. Huang, Y. H., Schafer-Elinder, L., Wu, R., Claesson, H. E. and Frostegard, J. (1999). Lysophosphatidylcholine (LPC) induces proinflammatory cytokines by a platelet-activating factor (PAF) receptor-dependent mechanism. Clin Exp Immunol. 116(2), 326-331 https://doi.org/10.1046/j.1365-2249.1999.00871.x
  17. Jackson, S. K., Abate, W., Parton, J., Jones, S. and Harwood, J. L. (2008). Lysophospholipid metabolism facilitates Toll-like receptor 4 membrane translocation to regulate the inflammatory response. Journal of Leukocyte Biology https://doi.org/10.1189/jlb.0907601
  18. Jing, Q., Xin, S. M., Zhang, W. B., Wang, P., Qin, Y. W. and Pei, G. (2000). Lysophosphatidylcholine activates p38 and p42/44 mitogen-activated protein kinases in monocytic THP-1 cells, but only p38 activation is involved in its stimulated chemotaxis. Circ Res. 87(1), 52-59 https://doi.org/10.1161/01.RES.87.1.52
  19. Kishimoto, T., Soda, Y., Matsuyama, Y. and Mizuno, K. (2002). An enzymatic assay for lysophosphatidylcholine concentration in human serum and plasma. Clin Biochem. 35(5), 411- 416 https://doi.org/10.1016/S0009-9120(02)00327-2
  20. Lauber, K., Bohn, E., Krober, S. M., Xiao, Y. J., Blumenthal, S. G., Lindemann, R. K., Marini, P., Wiedig, C., Zobywalski, A., Baksh, S., Xu, Y., Autenrieth, I. B., Schulze-Osthoff, K., Belka, C., Stuhler, G. and Wesselborg, S. (2003). Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell. 113(6), 717-730 https://doi.org/10.1016/S0092-8674(03)00422-7
  21. Lee, H. Y., Kang, H. K., Yoon, H. R., Kwak, J. Y. and Bae, Y. S. (2004). Lysophosphatidic acid is a mediator of Trp-Lys-Tyr- Met-Val-d-Met-induced calcium influx. Biochem Biophys Res Commun. 324(1), 458-465 https://doi.org/10.1016/j.bbrc.2004.09.072
  22. Lee, Y. K., Im, Y. J., Kim, Y. L. and Im, D. S. (2006). Characterization of Ca2+ influx induced by dimethylphytosphingosine and lysophosphatidylcholine in U937 monocytes. Biochem Biophys Res Commun. 348(3), 1116-1122 https://doi.org/10.1016/j.bbrc.2006.07.164
  23. Legradi, A., Chitu, V., Szukacsov, V., Fajka-Boja, R., Szekely Szucs, K. and Monostori, E. (2004). Lysophosphatidylcholine is a regulator of tyrosine kinase activity and intracellular Ca(2+) level in Jurkat T cell line. Immunol Lett. 91(1), 17-21 https://doi.org/10.1016/j.imlet.2003.10.009
  24. Lin, P., Welch, E. J., Gao, X. P., Malik, A. B. and Ye, R. D. (2005). Lysophosphatidylcholine modulates neutrophil oxidant production through elevation of cyclic AMP. J Immunol. 174(5), 2981-2989 https://doi.org/10.4049/jimmunol.174.5.2981
  25. Liu-Wu, Y., Hurt-Camejo, E. and Wiklund, O. (1998). Lysophosphatidylcholine induces the production of IL-$1{\beta}$ by human monocytes. Atherosclerosis. 137(2), 351-357 https://doi.org/10.1016/S0021-9150(97)00295-5
  26. McMurray, H. F., Parthasarathy, S. and Steinberg, D. (1993). Oxidatively modified low density lipoprotein is a chemoattractant for human T lymphocytes. J Clin Invest. 92(2), 1004-1008 https://doi.org/10.1172/JCI116605
  27. MUller, J., Petkovi, M., Schiller, J., Arnold, K., Reichl, S. and Arnhold, J. (2002). Effects of lysophospholipids on the generation of reactive oxygen species by fMLP- and PMA-stimulated human neutrophils. Luminescence : the journal of biological and chemical luminescence. 17(3), 141-149 https://doi.org/10.1002/bio.681
  28. Murch, O., Collin, M., Sepodes, B., Foster, S. J., Mota-Filipe, H. and Thiemermann, C. (2006). Lysophosphatidylcholine reduces the organ injury and dysfunction in rodent models of gramnegative and gram-positive shock. Br J Pharmacol. 148(6), 769-777 https://doi.org/10.1038/sj.bjp.0706788
  29. Nakano, T., Raines, E. W., Abraham, J. A., Klagsbrun, M. and Ross, R. (1994). Lysophosphatidylcholine upregulates the level of heparin-binding epidermal growth factor-like growth factor mRNA in human monocytes. Proc Natl Acad Sci USA. 91(3), 1069-1073 https://doi.org/10.1073/pnas.91.3.1069
  30. Ngwenya, B. Z. and Yamamoto, N. (1985). Activation of peritoneal macrophages by lysophosphatidylcholine. Biochim Biophys Acta. 839(1), 9-15 https://doi.org/10.1016/0304-4165(85)90175-8
  31. Nishi, E., Kume, N., Ochi, H., Moriwaki, H., Wakatsuki, Y., Higashiyama, S., Taniguchi, N. and Kita, T. (1997). Lysophosphatidylcholine increases expression of heparin-binding epidermal growth factor-like growth factor in human T lymphocytes. Circ Res. 80(5), 638-644 https://doi.org/10.1161/01.RES.80.5.638
  32. Nishi, E., Kume, N., Ueno, Y., Ochi, H., Moriwaki, H. and Kita, T. (1998). Lysophosphatidylcholine enhances cytokine-induced interferon gamma expression in human T lymphocytes. Circ Res. 83(5), 508-515 https://doi.org/10.1161/01.RES.83.5.508
  33. Nishioka, H., Horiuchi, H., Arai, H. and Kita, T. (1998). Lysophosphatidylcholine generates superoxide anions through activation of phosphatidylinositol 3-kinase in human neutrophils. FEBS Lett. 441(1), 63-66 https://doi.org/10.1016/S0014-5793(98)01526-9
  34. Oestvang, J., Anthonsen, M. W. and Johansen, B. (2003). Role of secretory and cytosolic phospholipase A(2) enzymes in lysophosphatidylcholine-stimulated monocyte arachidonic acid release. FEBS Lett. 555(2), 257-262 https://doi.org/10.1016/S0014-5793(03)01242-0
  35. Ogita, T., Tanaka, Y., Nakaoka, T., Matsuoka, R., Kira, Y., Nakamura, M., Shimizu, T. and Fujita, T. (1997). Lysophosphatidylcholine transduces Ca2+ signaling via the platelet-activating factor receptor in macrophages. Am J Physiol. 272(1 Pt 2), H17-24
  36. Okajima, F., Sato, K., Tomura, H., Kuwabara, A., Nochi, H., Tamoto, K., Kondo, Y., Tokumitsu, Y. and Ui, M. (1998). Stimulatory and inhibitory actions of lysophosphatidylcholine, depending on its fatty acid residue, on the phospholipase C/ Ca2+ system in HL-60 leukaemia cells. Biochem J. 336 (Pt 2), 491-500 https://doi.org/10.1042/bj3360491
  37. Olofsson, K. E., Andersson, L., Nilsson, J. and Björkbacka, H. (2008). Nanomolar concentrations of lysophosphatidylcholine recruit monocytes and induce pro-inflammatory cytokine production in macrophages. Biochem Biophys Res Commun. 370(2), 348-352 https://doi.org/10.1016/j.bbrc.2008.03.087
  38. Ousman, S. S. and David, S. (2000). Lysophosphatidylcholine induces rapid recruitment and activation of macrophages in the adult mouse spinal cord. Glia. 30(1), 92-104 https://doi.org/10.1002/(SICI)1098-1136(200003)30:1<92::AID-GLIA10>3.0.CO;2-W
  39. Parks, B. W., Gambill, G. P., Lusis, A. J. and Kabarowski, J. H. (2005). Loss of G2A promotes macrophage accumulation in atherosclerotic lesions of low density lipoprotein receptor-deficient mice. J Lipid Res. 46(7), 1405-1415 https://doi.org/10.1194/jlr.M500085-JLR200
  40. Perrin-Cocon, L., Agaugue, S., Coutant, F., Saint-Mezard, P., Guironnet-Paquet, A., Nicolas, J. F., Andre, P. and Lotteau, V. (2006). Lysophosphatidylcholine is a natural adjuvant that initiates cellular immune responses. Vaccine. 24(9), 1254-1263 https://doi.org/10.1016/j.vaccine.2005.09.036
  41. Peter, C., Waibel, M., Radu, C. G., Yang, L. V., Witte, O. N., Schulze-Osthoff, K., Wesselborg, S. and Lauber, K. (2008). Migration to apoptotic 'find-me' signals is mediated via the phagocyte receptor G2A. J Biol Chem. 283(9), 5296-5305 https://doi.org/10.1074/jbc.M706586200
  42. Quinn, M. T., Parthasarathy, S. and Steinberg, D. (1988). Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 85(8), 2805-2809 https://doi.org/10.1073/pnas.85.8.2805
  43. Radu, C. G., Yang, L. V., Riedinger, M., Au, M. and Witte, O. N. (2004). T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proc Natl Acad Sci U S A. 101(1), 245- 250 https://doi.org/10.1073/pnas.2536801100
  44. Rikitake, Y., Hirata, K., Yamashita, T., Iwai, K., Kobayashi, S., Itoh, H., Ozaki, M., Ejiri, J., Shiomi, M., Inoue, N., Kawashima, S. and Yokoyama, M. (2002). Expression of G2A, a receptor for lysophosphatidylcholine, by macrophages in murine, rabbit, and human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 22(12), 2049-2053 https://doi.org/10.1161/01.ATV.0000040598.18570.54
  45. Ryborg, A. K., Deleuran, B., Sogaard, H. and Kragballe, K. (2000). Intracutaneous injection of lysophosphatidylcholine induces skin inflammation and accumulation of leukocytes. Acta Derm Venereol. 80(4), 242-246 https://doi.org/10.1080/000155500750012090
  46. Ryborg, A. K., Deleuran, B., Thestrup-Pedersen, K. and Kragballe, K. (1994). Lysophosphatidylcholine: a chemoattractant to human T lymphocytes. Arch Dermatol Res. 286(8), 462-465 https://doi.org/10.1007/BF00371572
  47. Sakai, M., Miyazaki, A., Hakamata, H., Sasaki, T., Yui, S., Yamazaki, M., Shichiri, M. and Horiuchi, S. (1994). Lysophosphatidylcholine plays an essential role in the mitogenic effect of oxidized low density lipoprotein on murine macrophages. J Biol Chem. 269(50), 31430-31435
  48. Sakata-Kaneko, S., Wakatsuki, Y., Usui, T., Matsunaga, Y., Itoh, T., Nishi, E., Kume, N. and Kita, T. (1998). Lysophosphatidylcholine upregulates CD40 ligand expression in newly activated human CD4+ T cells. FEBS Lett. 433(1-2), 161-165 https://doi.org/10.1016/S0014-5793(98)00898-9
  49. Schilling, T., Lehmann, F., Rückert, B. and Eder, C. (2004). Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia. J Physiol (Lond). 557(Pt 1), 105-120 https://doi.org/10.1113/jphysiol.2004.060632
  50. Schmid, B., Finnen, M. J., Harwood, J. L. and Jackson, S. K. (2003). Acylation of lysophosphatidylcholine plays a key role in the response of monocytes to lipopolysaccharide. Eur J Biochem. 270(13), 2782-2788 https://doi.org/10.1046/j.1432-1033.2003.03649.x
  51. Silliman, C. C., Clay, K. L., Thurman, G. W., Johnson, C. A. and Ambruso, D. R. (1994). Partial characterization of lipids that develop during the routine storage of blood and prime the neutrophil NADPH oxidase. J Lab Clin Med. 124(5), 684-694
  52. Silliman, C. C., Dickey, W. O., Paterson, A. J., Thurman, G. W., Clay, K. L., Johnson, C. A. and Ambruso, D. R. (1996). Analysis of the priming activity of lipids generated during routine storage of platelet concentrates. Transfusion. 36(2), 133-139 https://doi.org/10.1046/j.1537-2995.1996.36296181925.x
  53. Silliman, C. C., Elzi, D. J., Ambruso, D. R., Musters, R. J., Hamiel, C., Harbeck, R. J., Paterson, A. J., Bjornsen, A. J., Wyman, T. H., Kelher, M., England, K. M., McLaughlin-Malaxecheberria, N., Barnett, C. C., Aiboshi, J. and Bannerjee, A. (2003). Lysophosphatidylcholines prime the NADPH oxidase and stimulate multiple neutrophil functions through changes in cytosolic calcium. J Leukoc Biol. 73(4), 511-524 https://doi.org/10.1189/jlb.0402179
  54. Taylor, L. A., Arends, J., Hodina, A. K., Unger, C. and Massing, U. (2007). Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids in health and disease. 6, 17 https://doi.org/10.1186/1476-511X-6-17
  55. Weber, C., Erl, W. and Weber, P. C. (1995). Enhancement of monocyte adhesion to endothelial cells by oxidatively modified low-density lipoprotein is mediated by activation of CD11b. Biochem Biophys Res Commun. 206(2), 621-628 https://doi.org/10.1006/bbrc.1995.1088
  56. Weng, Z., Fluckiger, A. C., Nisitani, S., Wahl, M. I., Le, L. Q., Hunter, C. A., Fernal, A. A., Le Beau, M. M. and Witte, O. N. (1998). A DNA damage and stress inducible G protein-coupled receptor blocks cells in G2/M. Proc Natl Acad Sci U S A. 95(21), 12334-12339 https://doi.org/10.1073/pnas.95.21.12334
  57. Wilson-Ashworth, H. A., Judd, A. M., Law, R. M., Freestone, B. D., Taylor, S., Mizukawa, M. K., Cromar, K. R., Sudweeks, S. and Bell, J. D. (2004). Formation of transient non-protein calcium pores by lysophospholipids in S49 Lymphoma cells. J Membr Biol. 200(1), 25-33 https://doi.org/10.1007/s00232-004-0691-x
  58. Wyman, T. H., Bjornsen, A. J., Elzi, D. J., Smith, C. W., England, K. M., Kelher, M. and Silliman, C. C. (2002). A two-insult in vitro model of PMN-mediated pulmonary endothelial damage: requirements for adherence and chemokine release. Am J Physiol Cell Physiol. 283(6), C1592-1603 https://doi.org/10.1152/ajpcell.00540.2001
  59. Yamamoto, M., Hara, H. and Adachi, T. (2002). The expression of extracellular-superoxide dismutase is increased by lysophosphatidylcholine in human monocytic U937 cells. Atherosclerosis. 163(2), 223-228 https://doi.org/10.1016/S0021-9150(02)00007-2
  60. Yamamoto, N. and Naraparaju, V. R. (1996). Role of vitamin D3- binding protein in activation of mouse macrophages. J Immunol. 157(4), 1744-1749
  61. Yan, J. J., Jung, J. S., Lee, J. E., Lee, J., Huh, S. O., Kim, H. S., Jung, K. C., Cho, J. Y., Nam, J. S., Suh, H. W., Kim, Y. H. and Song, D. K. (2004). Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat Med. 10(2), 161-167 https://doi.org/10.1038/nm989
  62. Yang, L. V., Radu, C. G., Wang, L., Riedinger, M. and Witte, O. N. (2005). Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood. 105(3), 1127-1134 https://doi.org/10.1182/blood-2004-05-1916
  63. Yuan, Y., Schoenwaelder, S. M., Salem, H. H. and Jackson, S. P. (1996). The bioactive phospholipid, lysophosphatidylcholine, induces cellular effects via G-protein-dependent activation of adenylyl cyclase. J Biol Chem. 271(43), 27090-27098 https://doi.org/10.1074/jbc.271.43.27090
  64. Yun, M. R., Okajima, F. and Im, D. S. (2004). The action mode of lysophosphatidylcholine in human monocytes. J Pharmacol Sci. 94(1), 45-50 https://doi.org/10.1254/jphs.94.45
  65. Zhu, X., Learoyd, J., Butt, S., Zhu, L., Usatyuk, P. V., Natarajan, V., Munoz, N. M. and Leff, A. R. (2007). Regulation of eosinophil adhesion by lysophosphatidylcholine via a non-storeoperated Ca2+ channel. Am J Respir Cell Mol Biol. 36(5), 585-593 https://doi.org/10.1165/rcmb.2006-0391OC
  66. Zurgil, N., Afrimzon, E., Shafran, Y., Shovman, O., Gilburd, B., Brikman, H., Shoenfeld, Y. and Deutsch, M. (2007). Lymphocyte resistance to lysophosphatidylcholine mediated apoptosis in atherosclerosis. Atherosclerosis. 190(1), 73-83 https://doi.org/10.1016/j.atherosclerosis.2006.02.013

Cited by

  1. Regulatory Effect of Cinnamaldehyde on Monocyte/Macrophage-Mediated Inflammatory Responses vol.2010, 2010, https://doi.org/10.1155/2010/529359
  2. Unique plasma metabolomic signature of osteonecrosis of the femoral head vol.34, pp.7, 2016, https://doi.org/10.1002/jor.23129
  3. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A–Phosphatidylinositol 3 Kinase–p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00920