References
- Asaoka, Y., Oka, M., Yoshida, K. and Nishizuka, Y. (1991). Lysophosphatidylcholine as a possible second messenger synergistic to diacylglycerol and calcium ion for T-lymphocyte activation. Biochem Biophys Res Commun. 178(3), 1378- 1385 https://doi.org/10.1016/0006-291X(91)91046-F
- Asaoka, Y., Oka, M., Yoshida, K., Sasaki, Y. and Nishizuka, Y. (1992). Role of lysophosphatidylcholine in T-lymphocyte activation: involvement of phospholipase A2 in signal transduction through protein kinase C. Proc Natl Acad Sci USA. 89(14), 6447-6451 https://doi.org/10.1073/pnas.89.14.6447
- Bauldry, S. A. and Wooten, R. E. (1997). Induction of cytosolic phospholipase A2 activity by phosphatidic acid and diglycerides in permeabilized human neutrophils: interrelationship between phospholipases D and A2. Biochem J. 322 (Pt 2), 353-363 https://doi.org/10.1042/bj3220353
- Biffl, W. L., Carnaggio, R., Moore, E. E., Ciesla, D. J., Johnson, J. L. and Silliman, C. C. (2003). Clinically relevant hypertonicity prevents stored blood- and lipid-mediated delayed neutrophil apoptosis independent of p38 MAPK or caspase-3 activation. Surgery. 134(1), 86-91 https://doi.org/10.1067/msy.2003.178
- Chen, G., Li, J., Qiang, X., Czura, C. J., Ochani, M., Ochani, K., Ulloa, L., Yang, H., Tracey, K. J., Wang, P., Sama, A. E. and Wang, H. (2005). Suppression of HMGB1 release by stearoyl lysophosphatidylcholine:an additional mechanism for its therapeutic effects in experimental sepsis. J Lipid Res. 46(4), 623-627 https://doi.org/10.1194/jlr.C400018-JLR200
- Coutant, F., Agaugue, S., Perrin-Cocon, L., Andre, P. and Lotteau, V. (2004). Sensing environmental lipids by dendritic cell modulates its function. J Immunol. 172(1), 54-60 https://doi.org/10.4049/jimmunol.172.1.54
- Coutant, F., Perrin-Cocon, L., Agaugué, S., Delair, T., Andre, P. and Lotteau, V. (2002). Mature dendritic cell generation promoted by lysophosphatidylcholine. J Immunol. 169(4), 1688- 1695 https://doi.org/10.4049/jimmunol.169.4.1688
- De Vries, H. E., Ronken, E., Reinders, J. H., Buchner, B., Van Berkel, T. J. and Kuiper, J. (1998). Acute effects of oxidized low density lipoprotein on metabolic responses in macrophages. FASEB J. 12(1), 111-118 https://doi.org/10.1096/fasebj.12.1.111
- Drobnik, W., Liebisch, G., Audebert, F. X., Frohlich, D., Gluck, T., Vogel, P., Rothe, G. and Schmitz, G. (2003). Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res. 44(4), 754-761 https://doi.org/10.1194/jlr.M200401-JLR200
- Engelmann, B., Zieseniss, S., Brand, K., Page, S., Lentschat, A., Ulmer, A. J. and Gerlach, E. (1999). Tissue factor expression of human monocytes is suppressed by lysophosphatidylcholine. Arterioscler Thromb Vasc Biol. 19(1), 47-53 https://doi.org/10.1161/01.ATV.19.1.47
- Englberger, W., Bitter-Suermann, D. and Hadding, U. (1987). Influence of lysophospholipids and PAF on the oxidative burst of PMNL. Int J Immunopharmacol. 9(3), 275-282 https://doi.org/10.1016/0192-0561(87)90051-8
- Frasch, S. C., Zemski-Berry, K., Murphy, R. C., Borregaard, N., Henson, P. M. and Bratton, D. L. (2007). Lysophospholipids of different classes mobilize neutrophil secretory vesicles and induce redundant signaling through G2A. J Immunol. 178(10), 6540-6548 https://doi.org/10.4049/jimmunol.178.10.6540
- Ginsburg, I., Ward, P. A. and Varani, J. (1989). Lysophosphatides enhance superoxide responses of stimulated human neutrophils. Inflammation. 13(2), 163-174 https://doi.org/10.1007/BF00924787
- Gomez-Munoz, A., O'Brien, L., Hundal, R. and Steinbrecher, U. P. (1999). Lysophosphatidylcholine stimulates phospholipase D activity in mouse peritoneal macrophages. J Lipid Res. 40(6), 988-993
- Han, K. H., Hong, K. H., Ko, J., Rhee, K. S., Hong, M. K., Kim, J. J., Kim, Y. H. and Park, S. J. (2004). Lysophosphatidylcholine up-regulates CXCR4 chemokine receptor expression in human CD4 T cells. Journal of Leukocyte Biology. 76(1), 195-202 https://doi.org/10.1189/jlb.1103563
- Huang, Y. H., Schafer-Elinder, L., Wu, R., Claesson, H. E. and Frostegard, J. (1999). Lysophosphatidylcholine (LPC) induces proinflammatory cytokines by a platelet-activating factor (PAF) receptor-dependent mechanism. Clin Exp Immunol. 116(2), 326-331 https://doi.org/10.1046/j.1365-2249.1999.00871.x
- Jackson, S. K., Abate, W., Parton, J., Jones, S. and Harwood, J. L. (2008). Lysophospholipid metabolism facilitates Toll-like receptor 4 membrane translocation to regulate the inflammatory response. Journal of Leukocyte Biology https://doi.org/10.1189/jlb.0907601
- Jing, Q., Xin, S. M., Zhang, W. B., Wang, P., Qin, Y. W. and Pei, G. (2000). Lysophosphatidylcholine activates p38 and p42/44 mitogen-activated protein kinases in monocytic THP-1 cells, but only p38 activation is involved in its stimulated chemotaxis. Circ Res. 87(1), 52-59 https://doi.org/10.1161/01.RES.87.1.52
- Kishimoto, T., Soda, Y., Matsuyama, Y. and Mizuno, K. (2002). An enzymatic assay for lysophosphatidylcholine concentration in human serum and plasma. Clin Biochem. 35(5), 411- 416 https://doi.org/10.1016/S0009-9120(02)00327-2
- Lauber, K., Bohn, E., Krober, S. M., Xiao, Y. J., Blumenthal, S. G., Lindemann, R. K., Marini, P., Wiedig, C., Zobywalski, A., Baksh, S., Xu, Y., Autenrieth, I. B., Schulze-Osthoff, K., Belka, C., Stuhler, G. and Wesselborg, S. (2003). Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell. 113(6), 717-730 https://doi.org/10.1016/S0092-8674(03)00422-7
- Lee, H. Y., Kang, H. K., Yoon, H. R., Kwak, J. Y. and Bae, Y. S. (2004). Lysophosphatidic acid is a mediator of Trp-Lys-Tyr- Met-Val-d-Met-induced calcium influx. Biochem Biophys Res Commun. 324(1), 458-465 https://doi.org/10.1016/j.bbrc.2004.09.072
- Lee, Y. K., Im, Y. J., Kim, Y. L. and Im, D. S. (2006). Characterization of Ca2+ influx induced by dimethylphytosphingosine and lysophosphatidylcholine in U937 monocytes. Biochem Biophys Res Commun. 348(3), 1116-1122 https://doi.org/10.1016/j.bbrc.2006.07.164
- Legradi, A., Chitu, V., Szukacsov, V., Fajka-Boja, R., Szekely Szucs, K. and Monostori, E. (2004). Lysophosphatidylcholine is a regulator of tyrosine kinase activity and intracellular Ca(2+) level in Jurkat T cell line. Immunol Lett. 91(1), 17-21 https://doi.org/10.1016/j.imlet.2003.10.009
- Lin, P., Welch, E. J., Gao, X. P., Malik, A. B. and Ye, R. D. (2005). Lysophosphatidylcholine modulates neutrophil oxidant production through elevation of cyclic AMP. J Immunol. 174(5), 2981-2989 https://doi.org/10.4049/jimmunol.174.5.2981
-
Liu-Wu, Y., Hurt-Camejo, E. and Wiklund, O. (1998). Lysophosphatidylcholine induces the production of IL-
$1{\beta}$ by human monocytes. Atherosclerosis. 137(2), 351-357 https://doi.org/10.1016/S0021-9150(97)00295-5 - McMurray, H. F., Parthasarathy, S. and Steinberg, D. (1993). Oxidatively modified low density lipoprotein is a chemoattractant for human T lymphocytes. J Clin Invest. 92(2), 1004-1008 https://doi.org/10.1172/JCI116605
- MUller, J., Petkovi, M., Schiller, J., Arnold, K., Reichl, S. and Arnhold, J. (2002). Effects of lysophospholipids on the generation of reactive oxygen species by fMLP- and PMA-stimulated human neutrophils. Luminescence : the journal of biological and chemical luminescence. 17(3), 141-149 https://doi.org/10.1002/bio.681
- Murch, O., Collin, M., Sepodes, B., Foster, S. J., Mota-Filipe, H. and Thiemermann, C. (2006). Lysophosphatidylcholine reduces the organ injury and dysfunction in rodent models of gramnegative and gram-positive shock. Br J Pharmacol. 148(6), 769-777 https://doi.org/10.1038/sj.bjp.0706788
- Nakano, T., Raines, E. W., Abraham, J. A., Klagsbrun, M. and Ross, R. (1994). Lysophosphatidylcholine upregulates the level of heparin-binding epidermal growth factor-like growth factor mRNA in human monocytes. Proc Natl Acad Sci USA. 91(3), 1069-1073 https://doi.org/10.1073/pnas.91.3.1069
- Ngwenya, B. Z. and Yamamoto, N. (1985). Activation of peritoneal macrophages by lysophosphatidylcholine. Biochim Biophys Acta. 839(1), 9-15 https://doi.org/10.1016/0304-4165(85)90175-8
- Nishi, E., Kume, N., Ochi, H., Moriwaki, H., Wakatsuki, Y., Higashiyama, S., Taniguchi, N. and Kita, T. (1997). Lysophosphatidylcholine increases expression of heparin-binding epidermal growth factor-like growth factor in human T lymphocytes. Circ Res. 80(5), 638-644 https://doi.org/10.1161/01.RES.80.5.638
- Nishi, E., Kume, N., Ueno, Y., Ochi, H., Moriwaki, H. and Kita, T. (1998). Lysophosphatidylcholine enhances cytokine-induced interferon gamma expression in human T lymphocytes. Circ Res. 83(5), 508-515 https://doi.org/10.1161/01.RES.83.5.508
- Nishioka, H., Horiuchi, H., Arai, H. and Kita, T. (1998). Lysophosphatidylcholine generates superoxide anions through activation of phosphatidylinositol 3-kinase in human neutrophils. FEBS Lett. 441(1), 63-66 https://doi.org/10.1016/S0014-5793(98)01526-9
- Oestvang, J., Anthonsen, M. W. and Johansen, B. (2003). Role of secretory and cytosolic phospholipase A(2) enzymes in lysophosphatidylcholine-stimulated monocyte arachidonic acid release. FEBS Lett. 555(2), 257-262 https://doi.org/10.1016/S0014-5793(03)01242-0
- Ogita, T., Tanaka, Y., Nakaoka, T., Matsuoka, R., Kira, Y., Nakamura, M., Shimizu, T. and Fujita, T. (1997). Lysophosphatidylcholine transduces Ca2+ signaling via the platelet-activating factor receptor in macrophages. Am J Physiol. 272(1 Pt 2), H17-24
- Okajima, F., Sato, K., Tomura, H., Kuwabara, A., Nochi, H., Tamoto, K., Kondo, Y., Tokumitsu, Y. and Ui, M. (1998). Stimulatory and inhibitory actions of lysophosphatidylcholine, depending on its fatty acid residue, on the phospholipase C/ Ca2+ system in HL-60 leukaemia cells. Biochem J. 336 (Pt 2), 491-500 https://doi.org/10.1042/bj3360491
- Olofsson, K. E., Andersson, L., Nilsson, J. and Björkbacka, H. (2008). Nanomolar concentrations of lysophosphatidylcholine recruit monocytes and induce pro-inflammatory cytokine production in macrophages. Biochem Biophys Res Commun. 370(2), 348-352 https://doi.org/10.1016/j.bbrc.2008.03.087
- Ousman, S. S. and David, S. (2000). Lysophosphatidylcholine induces rapid recruitment and activation of macrophages in the adult mouse spinal cord. Glia. 30(1), 92-104 https://doi.org/10.1002/(SICI)1098-1136(200003)30:1<92::AID-GLIA10>3.0.CO;2-W
- Parks, B. W., Gambill, G. P., Lusis, A. J. and Kabarowski, J. H. (2005). Loss of G2A promotes macrophage accumulation in atherosclerotic lesions of low density lipoprotein receptor-deficient mice. J Lipid Res. 46(7), 1405-1415 https://doi.org/10.1194/jlr.M500085-JLR200
- Perrin-Cocon, L., Agaugue, S., Coutant, F., Saint-Mezard, P., Guironnet-Paquet, A., Nicolas, J. F., Andre, P. and Lotteau, V. (2006). Lysophosphatidylcholine is a natural adjuvant that initiates cellular immune responses. Vaccine. 24(9), 1254-1263 https://doi.org/10.1016/j.vaccine.2005.09.036
- Peter, C., Waibel, M., Radu, C. G., Yang, L. V., Witte, O. N., Schulze-Osthoff, K., Wesselborg, S. and Lauber, K. (2008). Migration to apoptotic 'find-me' signals is mediated via the phagocyte receptor G2A. J Biol Chem. 283(9), 5296-5305 https://doi.org/10.1074/jbc.M706586200
- Quinn, M. T., Parthasarathy, S. and Steinberg, D. (1988). Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 85(8), 2805-2809 https://doi.org/10.1073/pnas.85.8.2805
- Radu, C. G., Yang, L. V., Riedinger, M., Au, M. and Witte, O. N. (2004). T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proc Natl Acad Sci U S A. 101(1), 245- 250 https://doi.org/10.1073/pnas.2536801100
- Rikitake, Y., Hirata, K., Yamashita, T., Iwai, K., Kobayashi, S., Itoh, H., Ozaki, M., Ejiri, J., Shiomi, M., Inoue, N., Kawashima, S. and Yokoyama, M. (2002). Expression of G2A, a receptor for lysophosphatidylcholine, by macrophages in murine, rabbit, and human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 22(12), 2049-2053 https://doi.org/10.1161/01.ATV.0000040598.18570.54
- Ryborg, A. K., Deleuran, B., Sogaard, H. and Kragballe, K. (2000). Intracutaneous injection of lysophosphatidylcholine induces skin inflammation and accumulation of leukocytes. Acta Derm Venereol. 80(4), 242-246 https://doi.org/10.1080/000155500750012090
- Ryborg, A. K., Deleuran, B., Thestrup-Pedersen, K. and Kragballe, K. (1994). Lysophosphatidylcholine: a chemoattractant to human T lymphocytes. Arch Dermatol Res. 286(8), 462-465 https://doi.org/10.1007/BF00371572
- Sakai, M., Miyazaki, A., Hakamata, H., Sasaki, T., Yui, S., Yamazaki, M., Shichiri, M. and Horiuchi, S. (1994). Lysophosphatidylcholine plays an essential role in the mitogenic effect of oxidized low density lipoprotein on murine macrophages. J Biol Chem. 269(50), 31430-31435
- Sakata-Kaneko, S., Wakatsuki, Y., Usui, T., Matsunaga, Y., Itoh, T., Nishi, E., Kume, N. and Kita, T. (1998). Lysophosphatidylcholine upregulates CD40 ligand expression in newly activated human CD4+ T cells. FEBS Lett. 433(1-2), 161-165 https://doi.org/10.1016/S0014-5793(98)00898-9
- Schilling, T., Lehmann, F., Rückert, B. and Eder, C. (2004). Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia. J Physiol (Lond). 557(Pt 1), 105-120 https://doi.org/10.1113/jphysiol.2004.060632
- Schmid, B., Finnen, M. J., Harwood, J. L. and Jackson, S. K. (2003). Acylation of lysophosphatidylcholine plays a key role in the response of monocytes to lipopolysaccharide. Eur J Biochem. 270(13), 2782-2788 https://doi.org/10.1046/j.1432-1033.2003.03649.x
- Silliman, C. C., Clay, K. L., Thurman, G. W., Johnson, C. A. and Ambruso, D. R. (1994). Partial characterization of lipids that develop during the routine storage of blood and prime the neutrophil NADPH oxidase. J Lab Clin Med. 124(5), 684-694
- Silliman, C. C., Dickey, W. O., Paterson, A. J., Thurman, G. W., Clay, K. L., Johnson, C. A. and Ambruso, D. R. (1996). Analysis of the priming activity of lipids generated during routine storage of platelet concentrates. Transfusion. 36(2), 133-139 https://doi.org/10.1046/j.1537-2995.1996.36296181925.x
- Silliman, C. C., Elzi, D. J., Ambruso, D. R., Musters, R. J., Hamiel, C., Harbeck, R. J., Paterson, A. J., Bjornsen, A. J., Wyman, T. H., Kelher, M., England, K. M., McLaughlin-Malaxecheberria, N., Barnett, C. C., Aiboshi, J. and Bannerjee, A. (2003). Lysophosphatidylcholines prime the NADPH oxidase and stimulate multiple neutrophil functions through changes in cytosolic calcium. J Leukoc Biol. 73(4), 511-524 https://doi.org/10.1189/jlb.0402179
- Taylor, L. A., Arends, J., Hodina, A. K., Unger, C. and Massing, U. (2007). Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids in health and disease. 6, 17 https://doi.org/10.1186/1476-511X-6-17
- Weber, C., Erl, W. and Weber, P. C. (1995). Enhancement of monocyte adhesion to endothelial cells by oxidatively modified low-density lipoprotein is mediated by activation of CD11b. Biochem Biophys Res Commun. 206(2), 621-628 https://doi.org/10.1006/bbrc.1995.1088
- Weng, Z., Fluckiger, A. C., Nisitani, S., Wahl, M. I., Le, L. Q., Hunter, C. A., Fernal, A. A., Le Beau, M. M. and Witte, O. N. (1998). A DNA damage and stress inducible G protein-coupled receptor blocks cells in G2/M. Proc Natl Acad Sci U S A. 95(21), 12334-12339 https://doi.org/10.1073/pnas.95.21.12334
- Wilson-Ashworth, H. A., Judd, A. M., Law, R. M., Freestone, B. D., Taylor, S., Mizukawa, M. K., Cromar, K. R., Sudweeks, S. and Bell, J. D. (2004). Formation of transient non-protein calcium pores by lysophospholipids in S49 Lymphoma cells. J Membr Biol. 200(1), 25-33 https://doi.org/10.1007/s00232-004-0691-x
- Wyman, T. H., Bjornsen, A. J., Elzi, D. J., Smith, C. W., England, K. M., Kelher, M. and Silliman, C. C. (2002). A two-insult in vitro model of PMN-mediated pulmonary endothelial damage: requirements for adherence and chemokine release. Am J Physiol Cell Physiol. 283(6), C1592-1603 https://doi.org/10.1152/ajpcell.00540.2001
- Yamamoto, M., Hara, H. and Adachi, T. (2002). The expression of extracellular-superoxide dismutase is increased by lysophosphatidylcholine in human monocytic U937 cells. Atherosclerosis. 163(2), 223-228 https://doi.org/10.1016/S0021-9150(02)00007-2
- Yamamoto, N. and Naraparaju, V. R. (1996). Role of vitamin D3- binding protein in activation of mouse macrophages. J Immunol. 157(4), 1744-1749
- Yan, J. J., Jung, J. S., Lee, J. E., Lee, J., Huh, S. O., Kim, H. S., Jung, K. C., Cho, J. Y., Nam, J. S., Suh, H. W., Kim, Y. H. and Song, D. K. (2004). Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat Med. 10(2), 161-167 https://doi.org/10.1038/nm989
- Yang, L. V., Radu, C. G., Wang, L., Riedinger, M. and Witte, O. N. (2005). Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood. 105(3), 1127-1134 https://doi.org/10.1182/blood-2004-05-1916
- Yuan, Y., Schoenwaelder, S. M., Salem, H. H. and Jackson, S. P. (1996). The bioactive phospholipid, lysophosphatidylcholine, induces cellular effects via G-protein-dependent activation of adenylyl cyclase. J Biol Chem. 271(43), 27090-27098 https://doi.org/10.1074/jbc.271.43.27090
- Yun, M. R., Okajima, F. and Im, D. S. (2004). The action mode of lysophosphatidylcholine in human monocytes. J Pharmacol Sci. 94(1), 45-50 https://doi.org/10.1254/jphs.94.45
- Zhu, X., Learoyd, J., Butt, S., Zhu, L., Usatyuk, P. V., Natarajan, V., Munoz, N. M. and Leff, A. R. (2007). Regulation of eosinophil adhesion by lysophosphatidylcholine via a non-storeoperated Ca2+ channel. Am J Respir Cell Mol Biol. 36(5), 585-593 https://doi.org/10.1165/rcmb.2006-0391OC
- Zurgil, N., Afrimzon, E., Shafran, Y., Shovman, O., Gilburd, B., Brikman, H., Shoenfeld, Y. and Deutsch, M. (2007). Lymphocyte resistance to lysophosphatidylcholine mediated apoptosis in atherosclerosis. Atherosclerosis. 190(1), 73-83 https://doi.org/10.1016/j.atherosclerosis.2006.02.013
Cited by
- Regulatory Effect of Cinnamaldehyde on Monocyte/Macrophage-Mediated Inflammatory Responses vol.2010, 2010, https://doi.org/10.1155/2010/529359
- Unique plasma metabolomic signature of osteonecrosis of the femoral head vol.34, pp.7, 2016, https://doi.org/10.1002/jor.23129
- Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A–Phosphatidylinositol 3 Kinase–p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00920