Osmotic Stress-Inducible Expression of a Lipid Transfer Protein Gene in Poplar

  • Lee, Hyo-Shin (Biotechnology Division, Korea Forest Research Institute) ;
  • Shin, Han-Na (School of Forest Sciences, Seoul National University) ;
  • Bae, Eun-Kyung (Biotechnology Division, Korea Forest Research Institute) ;
  • Lee, Jae-Soon (Biotechnology Division, Korea Forest Research Institute) ;
  • Noh, Eun-Woon (Biotechnology Division, Korea Forest Research Institute)
  • 발행 : 2008.06.30

초록

We have cloned an LTP gene (PoLTP1) from poplar (Populus alba ${\times}$ P. tremula var. glandulosa) suspension cells and examined changes in its expression levels in response to various stresses and ABA treatment. The full-length PoLTP1 cDNA clone encodes a polypeptide of 116 amino acids with typical characteristics of LTPs, notably a conserved arrangement of cysteine residues. Southern blot analysis indicate that two or three copies of the PoLTP1 are present in the genome of the investigated hybrid poplar. In addition, northern analysis of samples from soil-grown plants indicate that PoLTP1 is tissue-specifically expressed in the leaves and flowers. The gene is significantly up-regulated by treatment with mannitol, NaCl and ABA, but not by either cold or wounding. These results indicate that PoLTP1 is involved in osmotic stress responses in poplar plants and suspension cells.

키워드

참고문헌

  1. Arondel, V. and J.C. Kader. 1990. Lipid transfer protein in plants. Experientia 46: 579-585 https://doi.org/10.1007/BF01939696
  2. Cameron, K.D., M.A. Teece and L.B. Smart. 2006. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140: 176-183 https://doi.org/10.1104/pp.105.069724
  3. Castro, M.S., I.R. Gerhardt, S. Orru, P. Pucci and C. Jr Bloch. 2003. Purification and characterization of a small (7.3 kDa) putative lipid transfer protein from maize seeds. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 794: 109-114 https://doi.org/10.1016/S1570-0232(03)00423-9
  4. Cazale, A.C., M.A. Rouet-Mayer, H. Barbier-Brygoo, Y. Mathieu and C. Lauriere. 1998. Oxidative burst and hypoosmotic stress in tobacco cell suspension. Plant Physiol. 116: 659-669 https://doi.org/10.1104/pp.116.2.659
  5. Choi, Y.I., E.W. Noh, M.S. Han and Y.S. Yi. 2001. Estimation of cellular damages caused by paraquat and lead using a cell culture system. J. Plant Biotech. 3: 83-88
  6. Douliez, J.P., T. Michon and D. Marion. 2000. Steady-state tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (nsLTP1). Biochem. Biophys. Acta 1467: 65-72 https://doi.org/10.1016/S0005-2736(00)00197-8
  7. Dunn, M.A., M.A. Hughes, L. Zhang, R.S. Pearce, A.S. Quigley and P.L. Jack. 1991. Nucleotide sequence and molecular analysis of the low temperature induced cereal gene, BLT4. Mol. Gen. Genet. 229: 389-394 https://doi.org/10.1007/BF00267460
  8. Fleming, A.J., T. Mandel, S. Hofmann, P. Sterk, S.C. de Vries and C. Kuhlemeier. 1992. Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J. 2: 855-862
  9. Gonzalez-Martinez, S.C., N.C. Wheeler, E. Ersoz, C.D. Nelson and D.B. Neale. 2007. Association genetics in Pinus taeda L. 1. Wood property traits. Genetics 175: 399-409
  10. Heinemann, B., K.V. Andersen, P.R. Nielson, L.M. Bech and F.M. Poulsen. 1996. Structure in solution of a four-helix lipid binding protein. Protein Sci. 5: 13-23
  11. Hollenbach, B., L. Schreiber, W. Hartung and K.J. Dietz. 1997. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: implications for the involvement of lipid transfer proteins in wax assembly. Planta 203: 9-19 https://doi.org/10.1007/s004250050159
  12. Hughes, M.A., M.A. Dunn, R.S. Pearce, A.J. White and L. Zhang. 1992. An abscisic-acid-responsive, low temperature barley gene has homology with a maize phospholipid transfer protein. Plant Cell Environ. 15: 861-865 https://doi.org/10.1111/j.1365-3040.1992.tb02155.x
  13. Jansson, S. and C.J. Douglas. 2007. Populus: a model system for plant biology. Annu. Rev. Plant Biol. 58: 435-458 https://doi.org/10.1146/annurev.arplant.58.032806.103956
  14. Kader, J.C. 1996. Lipid transfer protein in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 627-654 https://doi.org/10.1146/annurev.arplant.47.1.627
  15. Kader, J.C. 1997. Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci. 2: 66-70 https://doi.org/10.1016/S1360-1385(97)82565-4
  16. Kim, T.H., M.C. Kim, J.H. Park, S.S. Han, B.R. Kim, B.Y. Moon, M.C. Suh and S.H. Cho. 2006. Differential expression of rice lipid transfer protein gene (LTP) classes in response to abscisic acid, salt, salicylic acid, and the fungal pathogen Magnaporthe grisea. J. Plant Biol. 49: 371-375 https://doi.org/10.1007/BF03178814
  17. Krause, A., C.J.A. Sigrist, I. Dehning, H. Sommer and W.J. Broughton. 1994. Accumulation of transcripts encoding a lipid transfer-like protein during deformation of nodulation-competent Vigna unguiculata root hairs. Mol. Plant-Microbe Interact. 7: 411-418 https://doi.org/10.1094/MPMI-7-0411
  18. Kreis, M., B.G. Forde, S. Rahman, B.J. Miflin and P.R. Shewry. 1985. Molecular evolution of the seed storage proteins of barley, rye and wheat. J. Mol. Biol. 183: 499-502 https://doi.org/10.1016/0022-2836(85)90017-8
  19. Lee, H.S., J.S. Lee, E.K. Bae, Y.I. Choi and E.W. Noh. 2005. Differential expression of a poplar copper chaperone gene in response to various abiotic stresses. Tree Physiol. 25: 395-401 https://doi.org/10.1093/treephys/25.4.395
  20. Ma, D.P., H. Tan, Y. Si, R.G. Creech and J.N. Jenkins. 1995. Differential expression of a lipid transfer protein gene in cotton fiber. Biochim. Biophys. Acta 1257: 81-84 https://doi.org/10.1016/0005-2760(95)00077-P
  21. Molina, A., A. Segura and F. Garcia-Olmedo. 1993. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett. 316: 119-122 https://doi.org/10.1016/0014-5793(93)81198-9
  22. Molina, A., I. Diaz, I.K. Vasil, P. Carbonero and F. Garcia-Olmedo. 1996. Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Mol. Gen. Genet. 252: 162-168 https://doi.org/10.1007/BF02173216
  23. Pearce, R.S., M.A. Dunn, J.E. Rixon, P. Harrison and M.A. Hughes. 1996. Expression of cold-inducible genes and frost hardiness in the crown meristem of young barley (Hordeum vulgareL. cv. Igri) plants grown in different environments. Plant Cell Environ. 19: 275-290 https://doi.org/10.1111/j.1365-3040.1996.tb00250.x
  24. Reeck, G.R. and C. Hedgcoth. 1985. Amino acid sequence alignment of cereal storage proteins. FEBS Lett. 180: 291-294 https://doi.org/10.1016/0014-5793(85)81088-7
  25. Seki, M., A. Kamei, K. Yamaguchi-Shinozaki and K. Shinozaki. 2003. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr. Opin. Biotechnol. 14: 194-199 https://doi.org/10.1016/S0958-1669(03)00030-2
  26. Thoma, S., Y. Kaneto and C.R. Somerville. 1993. A nonspecific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J. 3: 427-436 https://doi.org/10.1046/j.1365-313X.1993.t01-21-00999.x
  27. Vignols, F., G. Lund, S. Pammi, D. Trmousaygue and F. Grellet. 1994. Characterization of a rice gene coding for a lipid transfer protein. Gene 142: 265-270 https://doi.org/10.1016/0378-1119(94)90272-0
  28. Yang, T., L. Zhang, T. Zhang, H. Zhang, S. Xu and L. An. 2005. Transcriptional regulation network of cold-responsive genes in higher plants. Plant Sci. 169: 987-995 https://doi.org/10.1016/j.plantsci.2005.07.005