원거리 차량 추적 감지 방법

Methodology for Vehicle Trajectory Detection Using Long Distance Image Tracking

  • 발행 : 2008.06.15

초록

최근 교통감시시스템은 실시간의 영상검지시스템(VIPS)을 가장 선호하고 있으며, 그 수요는 매년 증가하고 있는 추세이다. 일반적으로 영상검지시스템은 공간기반의 검지알고리즘을 사용하고 있으며, 교통량, 속도, 점유율 등의 교통정보를 제공하고 있다. 현재 전 세계적으로 이미 상용화되어 있는 대부분의 영상검지시스템들은 Tripwire기반의 검지영역 내 차량의 존재유무를 판단하여 교통정보를 수집하는 알고리즘으로 구성되어 있으나, 개별차량에 대한 걸지는 불가능한 한계를 갖고 있다. 반면 개벽차량의 추적시스템은 보다 구체적인 공간적 교통정보를 제공할 수 있어 사고검지, 급차선 변경 등 교통정보를 보다 다양화 할 수 있다는 장점이 있으나 추적길이가 불과 100미터이내이면, 그 이상 관측하기 위해서는 운영자가 카메라를 줌인을 하여 영상을 확대하여야 한다. 따라서 본 논문에서는 차량 추적의 효과를 높이기 위해서 기존의 100미터 이내 추적거리를 여러 대의 CCTV시스템을 이용하더라도 200미터이상으로 확대함으로써 사고 또는 비정상적 차량흐름을 검지할 수 있는 알고리즘을 제안한다.

Video image processing systems (VIPS) offer numerous benefits to transportation models and applications, due to their ability to monitor traffic in real time. VIPS based on a wide-area detection algorithm provide traffic parameters such as flow and velocity as well as occupancy and density. However, most current commercial VIPS utilize a tripwire detection algorithm that examines image intensity changes in the detection regions to indicate vehicle presence and passage, i.e., they do not identify individual vehicles as unique targets. If VIPS are developed to track individual vehicles and thus trace vehicle trajectories, many existing transportation models will benefit from more detailed information of individual vehicles. Furthermore, additional information obtained from the vehicle trajectories will improve incident detection by identifying lane change maneuvers and acceleration/deceleration patterns. However, unlike human vision, VIPS cameras have difficulty in recognizing vehicle movements over a detection zone longer than 100 meters. Over such a distance, the camera operators need to zoom in to recognize objects. As a result, vehicle tracking with a single camera is limited to detection zones under 100m. This paper develops a methodology capable of monitoring individual vehicle trajectories based on image processing. To improve traffic flow surveillance, a long distance tracking algorithm for use over 200m is developed with multi-closed circuit television (CCTV) cameras. The algorithm is capable of recognizing individual vehicle maneuvers and increasing the effectiveness of incident detection.

키워드