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Abstract

We investigate the properties of (forcing)-implications, conjunctions and adjointness in a sense Morsi et.al [1,5].
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1. Introduction and Preliminaries

Recently, Morsi et.al [1,5] introduced the theory of im-
plications and conjunctions (generalized by t-norm) related
by adjointness in many valued logics.

In this paper, we introduce -characterizations of
(forcing)-implications, conjunctions and adjointness. We
investigate the relations of them. In particular, we study
the (forcing)-implications, conjunctions and adjointness in-
duced by functions. Let L be a completely distributive lat-
tice with a top 1 and a bottom O.

Definition 1.1. ([1,5]) A binary operation A : L x L — L
1s called an implication if it satisfies:

(A1) if x < y, then A(x, z) > Aly, 2).

(A2)if y < z, then A(z,y) < A(x, z).

(A3) A(1,z2) = . |

A binary operation A : L x L — L is called a forcing-
implication if it satisfies (A1), (A2) and

Hyy < ziff H(y,z) = 1.

Definition 1.2. ([1,5]) A binary operation K : L X L. — L
is called a conjunction if it satisfies:

(KD if x <y, then K(x,2) < K(y, 2).

(K2)ify < z,then K(z,y) < K(z, 2).

K3)K(1,z2) = z.

Definition 1.3. ([1,5]) (1) A binary operation K is called
a left adjoint of A, denoted by K - A, if it satisfies: for all
,Y,2 € L ’

(adjointness) K(z,y) < z iff y < A(z, 2).

(2) A binary operation H is called a left adjoint of A ,
denoted by H —°P A, if it satisfies: forall x,y,z € L,

(adjointness) H(y,z) <? z iff y < A(z,z)

where <P=>,
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Definition 1.4. ([1,5]) A function N : L. — L 1s called a
negation if it satisfies:

(N1) N(0) =1 and N(1) = 0.

(N2) if z < y, then N(x) > N(y).

(N3) N(N(z)) = x.

2. Implications and Conjunctions

Theorem 2.1. Let f : L — L be an order-isomorphic
function ( f is bijective and z < y iff f(z) < f(y) ) with
f(1) = 1. Define a binary operation A : L. — L by

Alz,y) = fTHN(f(2) v f(1)).

Then A is an implication. Moreover, if L is a Boolean al-

- gebra, then A is an implication and a forcing-implication.

Proof. 1t is easily proved

AL, 2) = FUNGF) V() = F71(F(2) = =

If L is a Boolean algebra, then 1 = N(a) Vbiffa < b.
Thus

1= A(z,y) = fH{N(f(@) V f(y)
iff 1=N(f(x))V f(y)
iff f(x) < f(y) iff z <y,

Hence A is a forcing-implication.
O

Example 2.2. Let (P(U),C,0,U) be a completely dis-
tributive lattice. |
(1) We define an operator A : P(U) — P(U) as fol-

lows:
AX,Y)=Y.

Then A is an implication operator.
(2) We define an operator H : P(U) — P(U) as fol-

lows: S
U ifXCY,
H(X’Y):{ D XY



Then H is a forcing-implication.
(3) We define an operator A : P(U) — P(U) as fol-
lows

A(X,Y) = X°UY.

Then A is an implication and forcing implication operator.

Theorem 2.3. Let f : [0,1] — [f(0),1] be a bijective
strictly-increasing function and p > 0. Define binary oper-
ations Ay, Ay 1 [0,1] x [0,1] — [0, 1] by

Ai(z,y) = fﬁl(ff((my)l

Ao(e,y) = FH(L= @) + f() A1), £(0) =0

Then we have the following properties:

(1) A; and A, are implications.

(2)If p = 1, then A; and A, are implications and
forcing-implications.

Proof. (1) Since f(1) = 1, we have:

/\1), £(0) #£ 0

2

A(Ly)=f" (;(_%)5 A 1) =

Ax(Ly) = £ (L= PP + F) AL) =
(2) If p =1, then

Al(xay):f_l(;_(g%/\l) =1
@?Ez% >lexr<y

Theorem 2.3(1), we define an operator

Ay(z,y) = f~ (f((f)p/\l)
z\/(zp v 1AL

(=2+1)P
If p = 1, then A; is an implication and forcing-
implication.
(2) Let f : [0,1] — [0, 1] be a bijective strictly-
increasing function as f(z) = z*. From Theorem 2.3(1),
we define an operator

Ag(ey) = (- f@)P + F) A1)
=/ (1 —22 +y2) A L.

Ifp =1
implications.

, then A, is implications and forcing-

The Properties of Implications and Conjunctions

Theorem 2.5. Let f : L — L be an order-isomorphic
function with f(1) = 1. Define a binary operation K :
L — Lby

K(z,y) = f~'(f(@) A fy)).

Then K is a conjunction.

Proof. 1t is easily proved from

K,y =f(f)Af) =y

[

Example 2.6. Let (P(U),C,0,U) be a completely dis-
tributive lattice. We define an operator K : P(U) — P(U)
as follows:

K(X,Y)=XNY.

Then K is a conjunction.

Theorem 2.7. Let f : [0,1] — [f(0),1] be a bijective
strictly-increasing function and p > 0. Define binary oper-
ations K1, K5 : [0,1] x [0,1] — [0, 1] by

Ki(z,9) = (f@Pf )V £(0)), £(0) #0

Ka(z,y) = £ ((F@) + F(y) -

Then Ky and K5 are conjunctions.

)vo) £(0) = 0.

Proof. Since f(1) = 1, we have:
Ki(Ly) = [ (FOPf () V F(0) = v,

Ka(Ly) = f((FP + fly) = 1) v 0) =

]

Example 2.8. (1) Let f : [0,1] — [f(0 ), ] be a bijec-
tive strictly-increasing function as f(z) = $z* + 3. From
Theorem 2.7, we define an operator

Ki(z,y) = (f@rf) Vv £0)
=2 P2+ 1)z +1)» —1) V0.

(2) Let f : [0,1] — [0,1] be a bijective strictly-
increasing function as f(z) = z?. From Theorem 2.7, we
define an operator

Ka(z,y) = f7((F@) + f(y) -
= /(@ +y>-1) V0.

)\/0)
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3. The Adjointness for Fuzzy Logics

Theorem 3.1. (1) A binary operation K is a left adjoint of
Aiffforall z,y,z € L,

y < Az, K(z,y)), K(z,A(x,2)) < z.

(2) A binary operation H is a left adjoint of A, H 4°P
A, iff forall z,y,z € L,

y < A(H(y, 2), z), H(A(a:, 2),2) > .

Proof. (1) Since K(z,y) < K(z,y) and A(z,z) <
A(z, z), by adjointness, we have

y < Az, K{z,v)), Ktm,A(m,z)) < z.
Conversely, let K (x,y) < z. By (A2), we have
Az, 2) 2 Az, K(z,y)) > v.
Let Alx, z) > y. By (K2), we have
K(z,y) < K(z,A(z,2)) < z.

(2) Since H(z,y) <° H(x,y)and A(x, z) < A(z, 2),
by adjointness, we have

y < A(H(z,y),y), H(A(x,z),z) <? .
Conversely, let H(y, z) <°? z. By (A1), we have
Alz,2) > A(H(y,2),2) > v
Let A(x, z) > y. By (Al), we have
H(y,z) > H(A(z,2),2) > z.

Hence H(y, z) < x.
[

Theorem 3.2. Let (L, <) be a distributive complete lattice.
(1) An implication A satisfies A(x, A\ z;) = N\ A(z, z;) iff
there exists a conjunction K with K - A defined by

K(z,y) = /\{z € L|y< Az, 2)}
(2) A conjunction K satisfies K(x,Vz) =

V K(x, z;) iff there exists an implication A with K 4 A
defined by

A(w,y) = \{z € L| K(z,2) <y}
(3) An implication A satisfies A(\/ z;,z) = \ A(z;, 2)

iff there exists a forcing-implication H with H —H°? A de-
fined by

H(w,y) = \/{z € L |z < A(z,)}.
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Proof (1) (=) (K1) If z; < x3, then A(x1,2) >
A(zq,z) > yimplies K(z1,y) < K(z2,y).

(K2) If y1 < o, then y; < yo < A(x,z) implies
K(z,y1) < K(2,92).

K)HK(Ly)=ANzeLl|y<Alz=2z2=y
Hence K is a conjunction. Let y < A(z,z). Then
K(z,y) < z. Let K(z,y) < z. Then A(z, K(z,y)) <
A(zx, z) and -

Az, K(z,y)) =Alx, N{zeL|y< Az, 2)})

= NA(z,2) | y < Az, 2)}
2 Y. - |

So, A(x,z) > y. Hence K - A.
(<) Enough to A\ A(z, z;) < A(z, A\ z;). It follows
from: |

K(z, N Az, z)) < K(z, A(z, 2)) < 2
= K(IE,/\A(m,zZ)) < /\Zi
= NA(z, z;) < Az, A z1).

2) (=) (AD) If z; < zo, then K(x1,2) < K(z29,2).
So, A(x1,y) > A(x2,y).

(A2) If y; < y9, then K(z,2) < y1 < yo implies
A('xayl) < A('/B?yQ)

(A3 ALy) = V{z € L | K(1,2) = 2 <y} =y
Hence A is an implication. Let K(z,y) < z. By the
definition of A, ¥y < A(z,z). Let z < A(z,y). Then
K(z,A(z,y)) > K(z,z) and

K(e. Awy) =K@ V(z € L) Kz, <y)

= V{K(x,2) | K(z,z) <y}
<y.

So, K(z,z) < y. Hence K - A.
(<) Enough to \/ K(x,z;) > K(z,V 2). It follows
from:
Alz,\| K(x,2;) > Az, K(x,2)) > 2
= A(xa VK(QB, Zz) > VZ?Z
= VK(z,z) > K(z,V z).

(3) (=) Let H(y, z) = 1 be given. Then y < z from:
z=A(l,z) = A(H(y, 2), 2)
= A(V{z: |y < A(zi, 2)}, 2)

> MA@, 2) |y < Az, 2)}
> y.

Lety < 2. Since y < z = A(1, z), we have

H(y,z) = \/{a':z- |y < Az, 2)} = 1.

Hence H is a forcing-implication. Let y < A(z, z). By
the definition of H, z < H(y, z). Let x < H(y, z). Then
A(H(y,z),z) < A(z, z) and

A(H(y,2),2) = A(\{z:i € L|y < Alz:,2)}, 2)
> y.



So, Az, z) > y. Hence H 4°P A.

(<) Enough to A A(z;,2) < A(V x;,2). It follows
from:

H(NA(x;,2),2) > H(A(z;,2)2) > x;
= H(A\ A(zi,2),2) > V z;

[]

Theorem 3.3. Let f : [0,1] — [f(0),1] be a bijective
strictly-increasing continuous function. Define an implica-

tion A : [0,1] x [0,1] — [0,1] by
Az,y) = ! (fc—% A1), (0)#0.

Then there exists a forcing-implication H such that A = H
and conjunction K such that

FHf (@) f(y) v £(0)).

Proof. Since A satisfies A(\/ z;,z) = \ A(z;, z), by The-
orem 3.2(3), there exists a forcing-implication H defined
by

K(xay) —

H(z,y) = \/{z cL|x<A(z,y)}.
Since z < A(z,y) = f~ (;Eyg A 1), we have z <
( f(w) A 1). Since A is continuous from pasting lemma,
we have

e (fW) )

H(z,y)=f (f(a?)/\l .
Hence A = H. Since A is continuous, we have
A(z, Az) = NA(z,z;). By Theorem 3.2(1), there ex-
ists a conjunction K defined by K(z,y) = A{z € L |y <

A(z,2)}. Sincey < f~ (;%z% A 1), we have

2> fH(f () f(y) v £(0).
Hence K (z,y) = f(f(=)f(y) v £(0)). [
Example 3.4. Let f : [0,1] — [f(0), 1] be a bijective
strictly-increasing function as f(x) = %:U + % From The-

orem 3.3, we define an operator

Az, y) :f‘l(f(y) /\1) el

f(z) z+1

Equivalently,
1 if z <y,
A(way) — { 2y‘;}s_cl+1 ifr> Y.

(1) A is an implication satisfying A(z,Az;) =
A\ A(z, z;). Hence we can obtain a conjunction K as fol-
lows

K(z,y) =Mzel|y<Alz,z) =

= (zttucly v

(P35 A1)

The Properties of Implications and Conjunctions

Furthermore, A(x,K(x,y)) =
K(z, A(z, z)) < z from:
Since x > K(z,y),

y V 1=Z and

2K (z,y) —z+1 1 -z
Alz, K = =y V .
(z,K(z,y)) ) yV T
Ifz >z,
K(:U, A(ZE, Z)) . :BA(:L‘ Z)-{“.’B;-A(x z)— \/ 0
_ w%%—i—x;—zszf—l—l v 0

- Z.

If £ < 2, then K(z, A(z,2)) =z < z.

(2) A is an implication satisfying A(\/ z;,z) =
N\ A(z;, z). Hence we can obtain a forcing implication H
as follows |

H(z,y) =V{zeL|z<Alzy) = (P77 A1}
= (Bz)AL
z(y+1
Furthermore, A(H(y,z),z2) = y V ‘(z_%ri_) and

H(A(z,z2),2) 2 «.

Theorem 3.5. Let f : [0,1] — [0,1] be a bijective
strictly-increasing continuous function. Define an impli-
cation A : [0,1] x [0,1] — [0,1] by

Alwy) = (1= f@) + F@) A1),

Then there exists a forcing-implication H suchthat A = H
and conjunction K such that |

K(,y) = f7(F@) + fly) = )V £(0)).

Proof. Since A satisfies A(\/ z;,2) = A\ A(z;, 2), by The-
orem 3.2(3), there exists a forcing-implication H defined
by

H(z,y)=\/{z €Lz < A(z,y)}.

Since z < A(z,y) = f* ((1ﬂf(z)+f(y))A1),we have

z < f1 ((1 — flz)+ fly)) A 1). Since A is continuous
from pasting lemma, we have

77 = @)+ Fw) A1),

Since A is continuous, we have
Az, A z:) = NA(z,z;). By Theorem 3.2(2), there ex-
ists a conjunction K definedby K (z,y) = AN{z € L |y <

Az, z)}. Sincey < f1 ((l—f(x)—l—f(z))/\l), we have

H(zx,y) =

Hence A = H.

22 (@ + f) - DV ).

Hence K (2,y) = £ ((f(@) + f(y) - )V f(0)). O
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Example 3.6. Let f : [0,1] — [0, 1] be a bijective strictly-
increasing function as f(x) = zP(p > 0). From Theorem
3.5, we define an implication

w3 =

A(z,y) = ((1—:Ep—l—yp)/\1) :

Since A is an implication satisfying A{x, Az;) =
N\ Az, z;) and AN z;,2) = A\ A(z;, z). Hence we can
obtain a forcing implication H = A and a conjunction K
as follows

o

lq%yyz(wp+¢%_nvo).

Theorem 3.7. Let f : L — L be an order-isomorphic
function with f(1) = 1. Define a conjunction K : L x L —
L with K(z,\ z;) = \ K(z, z;) and

K(z,y) = f71(f(z) A f(y)).

Then there exists a forcing-implication H such that A = H
with K - A defined as

_ ) 1 i<y,
Hen)={ ) fo3Y
Proof. 1t is easily proved from Theorem 3.2. L]

Example 3.8. Let (P(U),C,0,U) be a completely dis-
tributive lattice. We define an operator X : P(U) — P(U)
as follows:

K(X,Y)=XnNY.
Then K is a conjunction with K (X,UY;) = UK(X,Y;).
We obtain an implication operator A = H as follows:

AX)Y) =\ {ZePU)|XNnZCY}

= H{ZePU)|ZcXuUY}

= X°UY.
Furthermore, X NZ C Y iff Z ¢ X°UY.

Example 3.9. We define an operator 4 : [0, 1] x [0,1] —
[0, 1] as follows:

Az, y) = {

Then A is an implication operator which does not satisfy

Az, \Nz:) # NA(z,2) and AV zi,2) # N\ Az, 2)

because

1 ify >2zxr—1,
(1—2xz)vy ify<2x-—1.

1 :/\neNA('gI_ﬁ’%)
#AVnen 1 = 70 2) = A5, 3) = 3
1 :/\n?’eNA(%a'%‘I‘a'l"f) 5
# A% Nnen 3+ 727) = A5, 3) = 3
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