The Properties of Implications and Conjunctions

Yong Chan Kim¹ and Sun Young Kim²

Department of Mathematics, Kangnung National University, Gangneung, 201-702, Korea
 Department of Applied Mathematics, Pai Chai University, Dae Jeon, 302-735, Korea

Abstract

We investigate the properties of (forcing)-implications, conjunctions and adjointness in a sense Morsi et.al [1,5].

Key words: (forcing)-implications, conjunctions, adjointness

1. Introduction and Preliminaries

Recently, Morsi et.al [1,5] introduced the theory of implications and conjunctions (generalized by t-norm) related by adjointness in many valued logics.

In this paper, we introduce characterizations of (forcing)-implications, conjunctions and adjointness. We investigate the relations of them. In particular, we study the (forcing)-implications, conjunctions and adjointness induced by functions. Let L be a completely distributive lattice with a top 1 and a bottom 0.

Definition 1.1. ([1,5]) A binary operation $A: L \times L \to L$ is called an implication if it satisfies:

(A1) if
$$x \leq y$$
, then $A(x, z) \geq A(y, z)$.

(A2) if
$$y \le z$$
, then $A(x, y) \le A(x, z)$.

(A3)
$$A(1, z) = z$$
.

A binary operation $A: L \times L \to L$ is called a forcing-implication if it satisfies (A1), (A2) and

(H)
$$y \le z$$
 iff $H(y, z) = 1$.

Definition 1.2. ([1,5]) A binary operation $K: L \times L \to L$ is called a conjunction if it satisfies:

(K1) if
$$x \leq y$$
, then $K(x, z) \leq K(y, z)$.

(K2) if
$$y \le z$$
, then $K(x, y) \le K(x, z)$.

(K3)
$$K(1, z) = z$$
.

Definition 1.3. ([1,5]) (1) A binary operation K is called a left adjoint of A, denoted by $K \dashv A$, if it satisfies: for all $x, y, z \in L$,

(adjointness)
$$K(x,y) \le z$$
 iff $y \le A(x,z)$.

(2) A binary operation H is called a left adjoint of A, denoted by $H\dashv^{op} A$, if it satisfies: for all $x,y,z\in L$,

(adjointness)
$$H(y,z) \leq^{op} x$$
 iff $y \leq A(x,z)$

where $\leq^{op} = \geq$.

Manuscript received May. 24, 2007; revised Jan. 30, 2008.

Definition 1.4. ([1,5]) A function $N:L\to L$ is called a negation if it satisfies:

(N1)
$$N(0) = 1$$
 and $N(1) = 0$.

(N2) if
$$x \leq y$$
, then $N(x) \geq N(y)$.

(N3)
$$N(N(x)) = x$$
.

2. Implications and Conjunctions

Theorem 2.1. Let $f: L \to L$ be an order-isomorphic function (f is bijective and $x \le y$ iff $f(x) \le f(y)$) with f(1) = 1. Define a binary operation $A: L \to L$ by

$$A(x,y) = f^{-1}(N(f(x)) \vee f(y)).$$

Then A is an implication. Moreover, if L is a Boolean algebra, then A is an implication and a forcing-implication.

Proof. It is easily proved

$$A(1,z) = f^{-1}(N(f(1)) \vee f(z)) = f^{-1}(f(z)) = z.$$

If L is a Boolean algebra, then $1 = N(a) \lor b$ iff $a \le b$. Thus

$$1 = A(x,y) = f^{-1}(N(f(x)) \vee f(y))$$
iff
$$1 = N(f(x)) \vee f(y)$$
iff
$$f(x) \leq f(y) \text{ iff } x \leq y.$$

Hence A is a forcing-implication.

Example 2.2. Let $(P(U), \subset, \emptyset, U)$ be a completely distributive lattice.

(1) We define an operator $A: P(U) \rightarrow P(U)$ as follows:

$$A(X,Y) = Y$$
.

Then A is an implication operator.

(2) We define an operator $H: P(U) \rightarrow P(U)$ as follows:

$$H(X,Y) = \left\{ \begin{array}{ll} U & \text{if } X \subset Y, \\ \emptyset & \text{if } X \not\subset Y. \end{array} \right.$$

Then H is a forcing-implication.

(3) We define an operator $A:P(U)\to P(U)$ as follows

$$A(X,Y) = X^c \cup Y$$
.

Then A is an implication and forcing implication operator.

Theorem 2.3. Let $f:[0,1] \to [f(0),1]$ be a bijective strictly-increasing function and p>0. Define binary operations $A_1, A_2:[0,1] \times [0,1] \to [0,1]$ by

$$A_1(x,y) = f^{-1}\left(\frac{f(y)}{f(x)^p} \wedge 1\right), \ f(0) \neq 0$$

$$A_2(x,y) = f^{-1}((1 - f(x)^p + f(y)) \wedge 1), f(0) = 0$$

Then we have the following properties:

- (1) A_1 and A_2 are implications.
- (2) If p=1 , then A_1 and A_2 are implications and forcing-implications.

Proof. (1) Since f(1) = 1, we have:

$$A_1(1,y) = f^{-1} \left(\frac{f(y)}{f(1)^p} \wedge 1 \right) = y,$$

$$A_2(1,y) = f^{-1} \left((1 - f(1)^p + f(y)) \wedge 1 \right) = y.$$
 (2) If $p = 1$, then

$$A_1(x,y) = f^{-1}\left(\frac{f(y)}{f(x)} \land 1\right) = 1$$

$$\Leftrightarrow \frac{f(y)}{f(x)} \ge 1 \Leftrightarrow x \le y$$

$$A_2(x,y) = f^{-1}\Big((1 - f(x) + f(y)) \wedge 1\Big) = 1$$

$$\Leftrightarrow 1 - f(x) + f(y) \ge 1 \Leftrightarrow x \le y.$$

Example 2.4. (1) Let $f:[0,1] \to [f(0),1]$ be a bijective strictly-increasing function as $f(x) = \frac{1}{2}x^2 + \frac{1}{2}$. From Theorem 2.3(1), we define an operator

$$A_1(x,y) = f^{-1} \left(\frac{f(y)}{f(x)^p} \wedge 1 \right)$$
$$= \sqrt{(2^p \frac{y^2+1}{(x^2+1)^p} - 1) \wedge 1}.$$

If p=1, then A_1 is an implication and forcing-implication.

(2) Let $f:[0,1] \to [0,1]$ be a bijective strictly-increasing function as $f(x) = x^2$. From Theorem 2.3(1), we define an operator

$$A_2(x,y) = f^{-1} \Big((1 - f(x)^p + f(y)) \wedge 1 \Big)$$
$$= \sqrt{(1 - x^{2p} + y^2) \wedge 1}.$$

If p=1 , then A_2 is implications and forcing-implications.

Theorem 2.5. Let $f: L \to L$ be an order-isomorphic function with f(1) = 1. Define a binary operation $K: L \to L$ by

$$K(x,y) = f^{-1}(f(x) \wedge f(y)).$$

Then K is a conjunction.

Proof. It is easily proved from

$$K(1,y) = f^{-1}(f(1) \wedge f(y)) = y.$$

Example 2.6. Let $(P(U), \subset, \emptyset, U)$ be a completely distributive lattice. We define an operator $K: P(U) \to P(U)$ as follows:

$$K(X,Y) = X \cap Y$$
.

Then K is a conjunction.

Theorem 2.7. Let $f:[0,1] \to [f(0),1]$ be a bijective strictly-increasing function and p>0. Define binary operations $K_1, K_2:[0,1] \times [0,1] \to [0,1]$ by

$$K_1(x,y) = f^{-1}(f(x)^p f(y) \vee f(0)), \ f(0) \neq 0$$

$$K_2(x,y) = f^{-1}\Big((f(x)^p + f(y) - 1) \vee 0\Big), \ f(0) = 0.$$

Then K_1 and K_2 are conjunctions.

Proof. Since f(1) = 1, we have:

$$K_1(1,y) = f^{-1}(f(1)^p f(y) \vee f(0)) = y,$$

$$K_2(1,y) = f^{-1}\Big((f(1)^p + f(y) - 1) \vee 0\Big) = y.$$

Example 2.8. (1) Let $f:[0,1] \to [f(0),1]$ be a bijective strictly-increasing function as $f(x) = \frac{1}{2}x^2 + \frac{1}{2}$. From Theorem 2.7, we define an operator

$$K_1(x,y) = f^{-1} \Big(f(x)^p f(y) \vee f(0) \Big)$$

= $\sqrt{(2^{-p}(y^2+1)(x^2+1)^p - 1) \vee 0}.$

(2) Let $f:[0,1] \to [0,1]$ be a bijective strictly-increasing function as $f(x) = x^2$. From Theorem 2.7, we define an operator

$$K_2(x,y) = f^{-1} \Big((f(x)^p + f(y) - 1) \vee 0 \Big)$$

= $\sqrt{(x^{2p} + y^2 - 1) \vee 0}$.

159

3. The Adjointness for Fuzzy Logics

Theorem 3.1. (1) A binary operation K is a left adjoint of A iff for all $x, y, z \in L$,

$$y \le A(x, K(x, y)), K(x, A(x, z)) \le z.$$

(2) A binary operation H is a left adjoint of A, $H \dashv^{op} A$, iff for all $x, y, z \in L$,

$$y \le A(H(y,z),z), \ H(A(x,z),z) \ge x.$$

Proof. (1) Since $K(x,y) \leq K(x,y)$ and $A(x,z) \leq A(x,z)$, by adjointness, we have

$$y \le A(x, K(x, y)), K(x, A(x, z)) \le z.$$

Conversely, let $K(x, y) \leq z$. By (A2), we have

$$A(x,z) \ge A(x,K(x,y)) \ge y.$$

Let $A(x, z) \ge y$. By (K2), we have

$$K(x,y) \le K(x,A(x,z)) \le z.$$

(2) Since $H(x,y) \leq^{op} H(x,y)$ and $A(x,z) \leq A(x,z)$, by adjointness, we have

$$y \le A(H(x,y),y), H(A(x,z),z) \le^{op} x.$$

Conversely, let $H(y, z) \leq^{op} x$. By (A1), we have

$$A(x,z) \geq A(H(y,z),z) \geq y.$$

Let $A(x, z) \ge y$. By (A1), we have

$$H(y,z) \ge H(A(x,z),z) \ge x.$$

Hence $H(y,z) \leq^{op} x$.

Theorem 3.2. Let (L, \leq) be a distributive complete lattice. (1) An implication A satisfies $A(x, \bigwedge z_i) = \bigwedge A(x, z_i)$ iff there exists a conjunction K with $K \dashv A$ defined by

$$K(x,y) = \bigwedge \{ z \in L \mid y \le A(x,z) \}.$$

(2) A conjunction K satisfies $K(x, \bigvee z_i) = \bigvee K(x, z_i)$ iff there exists an implication A with $K \dashv A$ defined by

$$A(x,y) = \bigvee \{z \in L \mid K(x,z) \le y\}.$$

(3) An implication A satisfies $A(\bigvee x_i, z) = \bigwedge A(x_i, z)$ iff there exists a forcing-implication H with $H \dashv^{op} A$ defined by

$$H(x,y) = \bigvee \{z \in L \mid x \le A(z,y)\}.$$

Proof. (1) (\Rightarrow) (K1) If $x_1 \leq x_2$, then $A(x_1, z) \geq A(x_2, z) \geq y$ implies $K(x_1, y) \leq K(x_2, y)$.

(K2) If $y_1 \leq y_2$, then $y_1 \leq y_2 \leq A(x,z)$ implies $K(x,y_1) \leq K(x,y_2)$.

(K3) $K(1,y)=\bigwedge\{z\in L\mid y\leq A(1,z)=z\}=y.$ Hence K is a conjunction. Let $y\leq A(x,z).$ Then $K(x,y)\leq z.$ Let $K(x,y)\leq z.$ Then $A(x,K(x,y))\leq A(x,z)$ and

$$A(x, K(x,y)) = A(x, \bigwedge \{z \in L \mid y \leq A(x,z)\})$$
$$= \bigwedge \{A(x,z) \mid y \leq A(x,z)\}$$
$$\geq y.$$

So, $A(x, z) \ge y$. Hence $K \dashv A$.

(⇐) Enough to $\bigwedge A(x, z_i) \leq A(x, \bigwedge z_i)$. It follows from:

$$K(x, \bigwedge A(x, z_i)) \leq K(x, A(x, z_i)) \leq z_i$$

$$\Rightarrow K(x, \bigwedge A(x, z_i)) \leq \bigwedge z_i$$

$$\Rightarrow \bigwedge A(x, z_i) \leq A(x, \bigwedge z_i).$$

(2) (\Rightarrow) (A1) If $x_1 \leq x_2$, then $K(x_1, z) \leq K(x_2, z)$. So, $A(x_1, y) \geq A(x_2, y)$.

(A2) If $y_1 \leq y_2$, then $K(x,z) \leq y_1 \leq y_2$ implies $A(x,y_1) \leq A(x,y_2)$.

(A3) $A(1,y) = \bigvee\{z \in L \mid K(1,z) = z \leq y\} = y$. Hence A is an implication. Let $K(x,y) \leq z$. By the definition of $A, y \leq A(x,z)$. Let $z \leq A(x,y)$. Then $K(x,A(x,y)) \geq K(x,z)$ and

$$K(x, A(x, y)) = K(x, \bigvee \{z \in L \mid K(x, z) \leq y\})$$
$$= \bigvee \{K(x, z) \mid K(x, z) \leq y\}$$
$$\leq y.$$

So, $K(x, z) \leq y$. Hence $K \dashv A$.

(\Leftarrow) Enough to $\bigvee K(x, z_i) \geq K(x, \bigvee z_i)$. It follows from:

$$A(x, \bigvee K(x, z_i) \ge A(x, K(x, z_i)) \ge z_i$$

$$\Rightarrow A(x, \bigvee K(x, z_i) \ge \bigvee z_i$$

$$\Rightarrow \bigvee K(x, z_i) \ge K(x, \bigvee z_i).$$

(3) (\Rightarrow) Let H(y, z) = 1 be given. Then $y \le z$ from:

$$z = A(1, z) = A(H(y, z), z)$$

= $A(\bigvee\{x_i \mid y \le A(x_i, z)\}, z)$
\geq \langle \{A(x_i, z) \ | y \le A(x_i, z)\}
\geq y.

Let $y \le z$. Since $y \le z = A(1, z)$, we have

$$H(y,z) = \bigvee \{x_i \mid y \le A(x_i,z)\} = 1.$$

Hence H is a forcing-implication. Let $y \leq A(x,z)$. By the definition of $H, x \leq H(y,z)$. Let $x \leq H(y,z)$. Then $A(H(y,z),z) \leq A(x,z)$ and

$$A(H(y,z),z) = A(\bigvee\{x_i \in L \mid y \leq A(x_i,z)\},z)$$

= $\bigwedge\{A(x_i,z) \mid y \leq A(x_i,z)\}$
 $\geq y.$

So, $A(x,z) \geq y$. Hence $H \dashv^{op} A$.

(\Leftarrow) Enough to $\bigwedge A(x_i,z) \leq A(\bigvee x_i,z)$. It follows from:

$$H(\bigwedge A(x_i, z), z) \ge H(A(x_i, z)z) \ge x_i$$

$$\Rightarrow H(\bigwedge A(x_i, z), z) \ge \bigvee x_i$$

$$\Rightarrow \bigwedge A(x_i, z) \le A(\bigvee x_i, z).$$

Theorem 3.3. Let $f:[0,1] \to [f(0),1]$ be a bijective strictly-increasing continuous function. Define an implication $A:[0,1] \times [0,1] \to [0,1]$ by

$$A(x,y) = f^{-1} \left(\frac{f(y)}{f(x)} \wedge 1 \right), \ f(0) \neq 0.$$

Then there exists a forcing-implication H such that A=H and conjunction K such that

$$K(x,y) = f^{-1}(f(x)f(y) \vee f(0)).$$

Proof. Since A satisfies $A(\bigvee x_i, z) = \bigwedge A(x_i, z)$, by Theorem 3.2(3), there exists a forcing-implication H defined by

$$H(x,y) = \bigvee \{z \in L \mid x \le A(z,y)\}.$$

Since $x \leq A(z,y) = f^{-1}(\frac{f(y)}{f(z)} \wedge 1)$, we have $z \leq f^{-1}(\frac{f(y)}{f(x)} \wedge 1)$. Since A is continuous from pasting lemma, we have

$$H(x,y) = f^{-1} \Big(\frac{f(y)}{f(x)} \wedge 1 \Big).$$

Hence A=H. Since A is continuous, we have $A(x, \bigwedge z_i) = \bigwedge A(x, z_i)$. By Theorem 3.2(1), there exists a conjunction K defined by $K(x,y) = \bigwedge \{z \in L \mid y \leq A(x,z)\}$. Since $y \leq f^{-1}(\frac{f(z)}{f(x)} \wedge 1)$, we have

$$z \ge f^{-1}(f(x)f(y) \vee f(0).$$

Hence
$$K(x, y) = f^{-1}(f(x)f(y) \vee f(0))$$
.

Example 3.4. Let $f:[0,1] \to [f(0),1]$ be a bijective strictly-increasing function as $f(x) = \frac{1}{2}x + \frac{1}{2}$. From Theorem 3.3, we define an operator

$$A(x,y) = f^{-1} \left(\frac{f(y)}{f(x)} \wedge 1 \right) = \left(\frac{2y - x + 1}{x + 1} \right) \wedge 1.$$

Equivalently,

$$A(x,y) = \begin{cases} 1 & \text{if } x \leq y, \\ \frac{2y-x+1}{x+1} & \text{if } x > y. \end{cases}$$

(1) A is an implication satisfying $A(x, \bigwedge z_i) = \bigwedge A(x, z_i)$. Hence we can obtain a conjunction K as follows

$$K(x,y) = \bigwedge \{ z \in L \mid y \le A(x,z) = (\frac{2z-x+1}{x+1}) \land 1 \}$$

= $(\frac{xy+x+y-1}{2}) \lor 0.$

Furthermore, $A(x,K(x,y))=y\vee\frac{1-x}{1+x}$ and $K(x,A(x,z))\leq z$ from: Since $x\geq K(x,y)$,

$$A(x, K(x, y)) = \frac{2K(x, y) - x + 1}{x + 1} = y \vee \frac{1 - x}{1 + x}.$$

If x > z,

$$K(x, A(x, z)) = \frac{xA(x,z) + x + A(x,z) - 1}{2} \vee 0$$

$$= \frac{x^{\frac{2z - x + 1}{x + 1}} + x + \frac{2z - x + 1}{x + 1} - 1}{2} \vee 0$$

$$= z.$$

If $x \leq z$, then $K(x, A(x, z)) = x \leq z$.

(2) A is an implication satisfying $A(\bigvee x_i, z) = \bigwedge A(x_i, z)$. Hence we can obtain a forcing implication H as follows

$$\begin{array}{ll} H(x,y) &= \bigvee \{z \in L \mid x \leq A(z,y) = (\frac{2y-z+1}{z+1}) \wedge 1\} \\ &= (\frac{2y-x+1}{x+1}) \wedge 1. \end{array}$$

Furthermore, $A(H(y,z),z) = y \lor \frac{z(y+1)}{z+1}$ and $H(A(x,z),z) \ge x$.

Theorem 3.5. Let $f:[0,1] \to [0,1]$ be a bijective strictly-increasing continuous function. Define an implication $A:[0,1] \times [0,1] \to [0,1]$ by

$$A(x,y) = f^{-1} \Big((1 - f(x) + f(y)) \wedge 1 \Big).$$

Then there exists a forcing-implication H such that A = H and conjunction K such that

$$K(x,y) = f^{-1}\Big((f(x) + f(y) - 1) \vee f(0)\Big).$$

Proof. Since A satisfies $A(\bigvee x_i, z) = \bigwedge A(x_i, z)$, by Theorem 3.2(3), there exists a forcing-implication H defined by

$$H(x,y) = \bigvee \{z \in L \mid x \le A(z,y)\}.$$

Since $x \le A(z,y) = f^{-1}\Big((1-f(z)+f(y))\wedge 1\Big)$, we have $z \le f^{-1}\Big((1-f(x)+f(y))\wedge 1\Big)$. Since A is continuous from pasting lemma, we have

$$H(x,y) = f^{-1} \Big((1 - f(x) + f(y)) \wedge 1 \Big).$$

Hence A=H. Since A is continuous, we have $A(x, \bigwedge z_i) = \bigwedge A(x, z_i)$. By Theorem 3.2(2), there exists a conjunction K defined by $K(x,y) = \bigwedge \{z \in L \mid y \leq A(x,z)\}$. Since $y \leq f^{-1} \Big((1-f(x)+f(z)) \wedge 1 \Big)$, we have

$$z \ge f^{-1} \Big((f(x) + f(y) - 1) \lor f(0) \Big).$$

Hence
$$K(x,y) = f^{-1}((f(x) + f(y) - 1) \vee f(0)).$$

Example 3.6. Let $f:[0,1] \to [0,1]$ be a bijective strictly-increasing function as $f(x) = x^p (p > 0)$. From Theorem 3.5, we define an implication

$$A(x,y) = \left((1 - x^p + y^p) \wedge 1 \right)^{\frac{1}{p}}.$$

Since A is an implication satisfying $A(x, \bigwedge z_i) = \bigwedge A(x, z_i)$ and $A(\bigvee x_i, z) = \bigwedge A(x_i, z)$. Hence we can obtain a forcing implication H = A and a conjunction K as follows

$$K(x,y) = \left((x^p + y^p - 1) \vee 0 \right)^{\frac{1}{p}}.$$

Theorem 3.7. Let $f: L \to L$ be an order-isomorphic function with f(1) = 1. Define a conjunction $K: L \times L \to L$ with $K(x, \bigvee z_i) = \bigvee K(x, z_i)$ and

$$K(x,y) = f^{-1}(f(x) \wedge f(y)).$$

Then there exists a forcing-implication H such that A = H with $K \dashv A$ defined as

$$H(x,y) = \begin{cases} 1 & \text{if } x \leq y, \\ y & \text{if } x \not\leq y. \end{cases}$$

Proof. It is easily proved from Theorem 3.2.

Example 3.8. Let $(P(U), \subset, \emptyset, U)$ be a completely distributive lattice. We define an operator $K: P(U) \to P(U)$ as follows:

$$K(X,Y) = X \cap Y$$
.

Then K is a conjunction with $K(X, \cup Y_i) = \cup K(X, Y_i)$. We obtain an implication operator A = H as follows:

$$\begin{array}{ll} A(X,Y) &= \bigcup \{Z \in P(U) \mid X \cap Z \subset Y\} \\ &= \bigcup \{Z \in P(U) \mid Z \subset X^c \cup Y\} \\ &= X^c \cup Y. \end{array}$$

Furthermore, $X \cap Z \subset Y$ iff $Z \subset X^c \cup Y$.

Example 3.9. We define an operator $A:[0,1]\times[0,1]\to[0,1]$ as follows:

$$A(x,y) = \begin{cases} 1 & \text{if } y > 2x - 1, \\ (1-x) \lor y & \text{if } y \le 2x - 1. \end{cases}$$

Then A is an implication operator which does not satisfy $A(x, \bigwedge z_i) \neq \bigwedge A(x, z_i)$ and $A(\bigvee x_i, z) \neq \bigwedge A(x_i, z)$ because

$$1 = \bigwedge_{n \in N} A(\frac{3}{4} - \frac{1}{n+1}, \frac{1}{2})
\neq A(\bigvee_{n \in N} \frac{3}{4} - \frac{1}{n+1}, \frac{1}{2}) = A(\frac{3}{4}, \frac{1}{2}) = \frac{1}{2}$$

$$1 = \bigwedge_{n \in N} A(\frac{3}{4}, \frac{1}{2} + \frac{1}{n+1})
\neq A(\frac{3}{4}, \bigwedge_{n \in N} \frac{1}{2} + \frac{1}{n+1}) = A(\frac{3}{4}, \frac{1}{2}) = \frac{1}{2}.$$

References

- [1] A.A.Abdel-Hamid and N.N. Morsi, "Associatively tied implications", *Fuzzy Sets and Systems*, vol.136, pp 291-311, 2003.
- [2] M. Gehrke, C. Walker and E. Walker, "A note on negations and nilpotent t-norms", *Int. Jour. of Approximate Reasoning*, vol 21, pp137-155, 1999.
- [3] G. Gerla, "An extension principle for fuzzy logics", Mathematical Logic Quarterly, vol 40, pp 357-380,1994.
- [4] P.Hajek, *Mathematics of Fuzzy Logic*, Kluwer Academic, Publishers, Dordrecht.1998.
- [5] N.N. Morsi, E.M. Roshdy, "Issues on adjointness in mutiple-valued logics", *Information Sciences*, vol.176, pp2886-2909, 2006.
- [6] H.T. Nguyen and E.A. Walker, *Fuzzy logic*, Chapman and Hall, New York, 2000.
- [7] E. Turunen," Algebraic structures in fuzzy logic", Fuzzy sets and Systems, vol 52, pp 181-188, 1992.
- [8] E. Turunen, *Mathematics behind fuzzy logic*, A Springer-Verlag Co., 1999.

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in Department of Mathematics, Kangnung University. His research interests are fuzzy logic and fuzzy topology.

Young Sun Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1985 and 1991, respectively. From 1988 to present, he is a professor in Department of Applied Mathematics, Pai Chai University. His research interests are fuzzy logic and fuzzy topology.