Fuzzy Weakly r-Semicontinuous Mappings

Seok Jong Lee and Jin Tae Kim

Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

Abstract

By generalizing the definition of fuzzy weakly semicontinuous mappings by B. S. Zhong, we introduce the concept of fuzzy weakly r-semicontinuous mappings in fuzzy topology of Chattopadhyay. Then the concept introduced by B. S. Zhong becomes a special case of our definition. Also, we show that fuzzy weakly r-semicontinuity and fuzzy weakly r-continuity are independent notions.

Key words: fuzzy weakly r-semicontinuous

1. Introduction

Chang [1] introduced fuzzy topological spaces and several other authors continued the investigation of such spaces. B. S. Zhong [2] introduced the concept of fuzzy weakly semicontinuous mappings in Chang's fuzzy topology. Chattopadhyay and his colleagues [3, 4] introduced another definition of fuzzy topology as a generalization of Chang's fuzzy topology. By generalizing the definition of fuzzy weakly semicontinuous mappings by B. S. Zhong, we introduce the concept of fuzzy weakly *r*-semicontinuous mappings in fuzzy topology of Chattopadhyay. Then the concept introduced by B. S. Zhong becomes a special case of our definition. Also, we show that fuzzy weakly *r*-semicontinuity and fuzzy weakly *r*-continuity are independent notions.

2. Preliminaries

We will denote the unit interval [0,1] of the real line by I and $I_0=(0,1]$. A member μ of I^X is called a fuzzy set in X. For any $\mu\in I^X$, μ^c denotes the complement $1-\mu$. By $\tilde{0}$ and $\tilde{1}$ we denote constant mappings on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

A Chang's fuzzy topology on X is a family T of fuzzy sets in X which satisfies the following properties:

- (1) $\tilde{0}, \tilde{1} \in T$.
- (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_i \in T$ for each i, then $\bigvee \mu_i \in T$.

The pair (X,T) is called a *Chang's fuzzy topological space*.

A fuzzy topology on X is a mapping $T: I^X \to I$ which satisfies the following properties:

- (1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$.
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$.
- (3) $\mathcal{T}(\bigvee \mu_i) \ge \bigwedge \mathcal{T}(\mu_i)$.

The pair (X, \mathcal{T}) is called a fuzzy topological space.

For each $\alpha \in (0,1]$, a fuzzy point x_{α} is a fuzzy set in X defined by

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

In this case, x and α are called the *support* and the *value* of x_{α} , respectively. A fuzzy point x_{α} is said to *belong* to a fuzzy set μ in X, denoted by $x_{\alpha} \in \mu$, if $\alpha \leq \mu(x)$.

Definition 2.1. ([5]) Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-open if $T(\mu) \geq r$,
- (2) fuzzy r-closed if $\mathcal{T}(\mu^c) \geq r$.

Definition 2.2. ([5, 6]) Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-semiopen if there is a fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \operatorname{cl}(\rho, r)$,
- (2) fuzzy r-semiclosed if there is a fuzzy r-closed set ρ in X such that $int(\rho, r) \le \mu \le \rho$,
- (3) fuzzy r-regular open if $int(cl(\mu, r), r) = \mu$,

(4) fuzzy r-regular closed if $cl(int(\mu, r), r) = \mu$.

Theorem 2.3. ([5]) Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then the following statements are equivalent:

- (1) μ is a fuzzy r-semiopen set.
- (2) μ^c is a fuzzy r-semiclosed set.
- (3) $\operatorname{cl}(\operatorname{int}(\mu, r), r) \geq \mu$.
- (4) $\operatorname{int}(\operatorname{cl}(\mu^c, r), r) \leq \mu^c$.

Definition 2.4. ([5]) Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-semiclosure is defined by

$$scl(\mu, r) = \bigwedge \{ \rho \in I^X \mid \mu \leq \rho, \ \rho \text{ is fuzzy } r\text{-semiclosed} \},$$

and the fuzzy r-semiinterior is defined by

$$\operatorname{sint}(\mu, r) = \bigvee \{ \rho \in I^X \mid \mu \geq \rho, \ \rho \text{ is fuzzy r-semiopen} \}.$$

Obviously $\mathrm{scl}(\mu, r)$ is the smallest fuzzy r-semiclosed set which contains μ and $\mathrm{sint}(\mu, r)$ is the greatest fuzzy r-semiopen set which is contained in μ . Also, $\mathrm{scl}(\mu, r) = \mu$ for any fuzzy r-semiclosed set μ and $\mathrm{sint}(\mu, r) = \mu$ for any fuzzy r-semiopen set μ . Moreover, we have

$$\operatorname{int}(\mu, r) \leq \operatorname{sint}(\mu, r) \leq \mu \leq \operatorname{scl}(\mu, r) \leq \operatorname{cl}(\mu, r).$$

Also, we have the following results:

- (1) $\operatorname{scl}(\tilde{0}, r) = \tilde{0}$, $\operatorname{scl}(\tilde{1}, r) = \tilde{1}$, $\operatorname{sint}(\tilde{0}, r) = \tilde{0}$, $\operatorname{sint}(\tilde{1}, r) = \tilde{1}$.
- (2) $\operatorname{scl}(\mu, r) \ge \mu$, $\operatorname{sint}(\mu, r) \le \mu$.
- (3) $\operatorname{scl}(\mu \vee \rho, r) \geq \operatorname{scl}(\mu, r) \vee \operatorname{scl}(\rho, r), \operatorname{sint}(\mu \wedge \rho, r) \leq \operatorname{sint}(\mu, r) \wedge \operatorname{sint}(\rho, r).$
- (4) $\operatorname{scl}(\operatorname{scl}(\mu,r),r) = \operatorname{scl}(\mu,r), \ \operatorname{sint}(\operatorname{sint}(\mu,r),r) = \operatorname{sint}(\mu,r).$

Theorem 2.5. ([7]) For a fuzzy set μ in a fuzzy topological space X and $r \in I_0$, we have :

- (1) $\operatorname{sint}(\mu, r)^c = \operatorname{scl}(\mu^c, r)$.
- (2) $\operatorname{scl}(\mu, r)^c = \operatorname{sint}(\mu^c, r)$.

Definition 2.6. ([7, 5, 6]) Let $f: (X, \mathcal{T}) \to (Y, \mathcal{U})$ be a mapping from a fuzzy topological space X to a fuzzy topological space Y and $r \in I_0$. Then f is called

(1) a fuzzy r-continuous mapping if $f^{-1}(\mu)$ is a fuzzy r-open set in X for each fuzzy r-open set μ in Y,

- (2) a fuzzy r-semicontinuous mapping if $f^{-1}(\mu)$ is a fuzzy r-semiopen set in X for each fuzzy r-open set μ in Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy r-semiclosed set in X for each fuzzy r-closed set μ in Y,
- (3) a fuzzy almost r-continuous mapping if $f^{-1}(\mu)$ is a fuzzy r-open set in X for each fuzzy r-regular open set μ in Y,
- (4) a fuzzy weakly r-continuous mapping if $f^{-1}(\mu) \le \inf(f^{-1}(\operatorname{cl}(\mu,r)),r)$ for each fuzzy r-open set μ in Y
- (5) a fuzzy r-irresolute mapping if $f^{-1}(\mu)$ is a fuzzy r-semiopen set in X for each fuzzy r-semiopen set μ in Y.

3. Fuzzy weakly r-semicontinuous mappings

We define the notion of fuzzy weakly r-semicontinuous mappings, and investigate some of their properties.

Definition 3.1. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a mapping from a fuzzy topological space X to a fuzzy topological space Y and $r\in I_0$. Then f is called a fuzzy weakly r-semicontinuous mapping if $f^{-1}(\mu) \leq \operatorname{sint}(f^{-1}(\operatorname{scl}(\mu,r)),r)$ for each fuzzy r-open set μ in Y.

Remark 3.2. It is obvious that a fuzzy r-semicontinuous mapping is also a fuzzy weakly r-semicontinuous mapping for each $r \in I_0$. But the converse does not hold as in the following example.

Example 3.3. Let $X = \{x, y, z\}$ and μ_1 and μ_2 be fuzzy sets in X defined as

$$\mu_1(x) = \frac{1}{3}, \ \mu_1(y) = \frac{1}{3}, \ \mu_1(z) = \frac{1}{2};$$

and

$$\mu_2(x) = \frac{1}{2}, \ \mu_2(y) = \frac{1}{2}, \ \mu_2(z) = \frac{1}{2}.$$

Define $\mathcal{T}_1: I^X \to I$ and $\mathcal{T}_2: I^X \to I$ by

$$\mathcal{T}_1(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_2, \\ 0 & \text{otherwise;} \end{cases}$$

and

$$\mathcal{T}_2(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \ \mu_2, \\ 0 & \text{otherwise.} \end{cases}$$

Then \mathcal{T}_1 and \mathcal{T}_2 are fuzzy topologies on X. Consider the mapping $f:(X,\mathcal{T}_1)\to (X,\mathcal{T}_2)$ defined by f(x)=x for each $x\in X$. Note that

$$f^{-1}(\tilde{0}) = \tilde{0} \leq \text{sint}(f^{-1}(\text{scl}(\tilde{0}, \frac{1}{2})), \frac{1}{2}) = \tilde{0},$$

$$f^{-1}(\tilde{1}) = \tilde{1} \leq \operatorname{sint}(f^{-1}(\operatorname{scl}(\tilde{1}, \frac{1}{2})), \frac{1}{2}) = \tilde{1},$$

$$f^{-1}(\mu_1) = \mu_1 \leq \operatorname{sint}(f^{-1}(\operatorname{scl}(\mu_1, \frac{1}{2})), \frac{1}{2})$$

$$= \operatorname{sint}(f^{-1}(\mu_2), \frac{1}{2}) = \mu_2,$$

and

$$f^{-1}(\mu_2) = \mu_2 \leq \operatorname{sint}(f^{-1}(\operatorname{scl}(\mu_2, \frac{1}{2})), \frac{1}{2})$$
$$= \operatorname{sint}(f^{-1}(\mu_2), \frac{1}{2}) = \mu_2.$$

Thus f is fuzzy weakly $\frac{1}{2}$ -semicontinuous mapping. But $f^{-1}(\mu_1) = \mu_1$ is not fuzzy $\frac{1}{2}$ -semiopen in (X, \mathcal{T}_1) and hence f is not a fuzzy $\frac{1}{2}$ -semicontinuous mapping.

Theorem 3.4. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a fuzzy almost r-continuous mapping. Then f is also a fuzzy weakly r-semicontinuous mapping.

Proof. Let μ be a fuzzy r-open set in Y. Using Theorem 4.2 in [6], we have

$$\begin{array}{ll} f^{-1}(\mu) & \leq & \operatorname{int}(f^{-1}(\operatorname{int}(\operatorname{cl}(\mu,r),r)),r) \\ & \leq & \operatorname{sint}(f^{-1}(\operatorname{int}(\operatorname{cl}(\mu,r),r)),r) \\ & \leq & \operatorname{sint}(f^{-1}(\operatorname{int}(\operatorname{cl}(\operatorname{scl}(\mu,r),r),r)),r). \end{array}$$

Since $\mathrm{scl}(\mu,r)$ is a fuzzy r-semiclosed set in Y, by Theorem 2.3,

$$\begin{array}{lll} f^{-1}(\mu) & \leq & \mathrm{sint}(f^{-1}(\mathrm{int}(\mathrm{cl}(\mathrm{scl}(\mu,r),r)),r) \\ & \leq & \mathrm{sint}(f^{-1}(\mathrm{scl}(\mu,r)),r). \end{array}$$

Hence f is a fuzzy weakly r-semicontinuous mapping. \square

Remark 3.5. The following example shows that the converse of Theorem 3.4 need not be true.

Example 3.6. Let X = I and μ_1 and μ_2 be fuzzy sets in X defined as

$$\mu_1(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2}, \\ 2x - 1 & \text{if } \frac{1}{2} \le x \le 1; \end{cases}$$

and

$$\mu_2(x) = \begin{cases} 1 & \text{if } 0 \le x \le \frac{1}{4}, \\ -4x + 2 & \text{if } \frac{1}{4} \le x \le \frac{1}{2}, \\ 0 & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Define $\mathcal{T}: I^X \to I$ by

$$\mathcal{T}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \ \mu_2, \ \mu_1 \lor \mu_2, \\ 0 & \text{otherwise.} \end{cases}$$

Then \mathcal{T} is a fuzzy topology on X. Let $f:(X,\mathcal{T})\to (X,\mathcal{T})$ be defined by $f(x)=\frac{1}{2}x$. It is easy to see that $f^{-1}(\tilde{0})=\tilde{0},\ f^{-1}(\tilde{1})=\tilde{1}, f^{-1}(\mu_1)=\tilde{0}$ and $f^{-1}(\mu_2)=f^{-1}(\mu_1\vee\mu_2)=\mu_1^c$. Since $\mathrm{cl}(\mu_2,\frac{1}{2})=\mu_1^c,\ \mu_1^c$ is a fuzzy $\frac{1}{2}$ -semiopen set and thus f is a fuzzy $\frac{1}{2}$ -semicontinuous mapping. Hence f is a fuzzy weakly $\frac{1}{2}$ -semicontinuous mapping. Note that $\mathrm{int}(\mathrm{cl}(\mu_2,\frac{1}{2}),\frac{1}{2})=\mu_2$. Thus μ_2 is a fuzzy $\frac{1}{2}$ -regular open set in Y. But $f^{-1}(\mu_2)=\mu_1^c$ is not fuzzy $\frac{1}{2}$ -open. Hence f is not a fuzzy almost $\frac{1}{2}$ -continuous mapping.

Remark 3.7. The following examples show that a fuzzy weakly r-semicontinuous mapping need not be fuzzy weakly r-continuous vice versa.

Example 3.8. A fuzzy weakly r-semicontinuous mapping need not be a fuzzy weakly r-continuous mapping.

Let $X=\{x,y,z\}$ and $\mu_1,\,\mu_2$ and μ_3 be fuzzy sets in X defined as

$$\mu_1(x) = \frac{3}{10}, \quad \mu_1(y) = \frac{1}{10}, \quad \mu_1(z) = \frac{1}{10};$$

$$\mu_2(x) = \frac{1}{2}, \quad \mu_2(y) = \frac{1}{2}, \quad \mu_2(z) = \frac{1}{2};$$

and

$$\mu_3(x) = \frac{1}{5}, \ \mu_3(y) = \frac{1}{10}, \ \mu_3(z) = 0.$$

Define $\mathcal{T}_1:I^X\to I$ and $\mathcal{T}_2:I^X\to I$ by

$$\mathcal{T}_1(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_3, \\ 0 & \text{otherwise;} \end{cases}$$

and

$$\mathcal{T}_2(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \mu_2, \\ 0 & \text{otherwise.} \end{cases}$$

Then \mathcal{T}_1 and \mathcal{T}_2 are fuzzy topologies on X. Consider the mapping $f:(X,\mathcal{T}_1)\to (X,\mathcal{T}_2)$ defined by f(x)=x for each $x\in X$. Then

$$\begin{split} f^{-1}(\tilde{0}) &= \tilde{0} \leq \mathrm{sint}(f^{-1}(\mathrm{scl}(\tilde{0},\frac{1}{2})),\frac{1}{2}) = \tilde{0}, \\ f^{-1}(\tilde{1}) &= \tilde{1} \leq \mathrm{sint}(f^{-1}(\mathrm{scl}(\tilde{1},\frac{1}{2})),\frac{1}{2}) = \tilde{1}, \\ f^{-1}(\mu_1) &= \mu_1 \leq \mathrm{sint}(f^{-1}(\mathrm{scl}(\mu_1,\frac{1}{2})),\frac{1}{2}) = \mu_2, \end{split}$$

and

$$f^{-1}(\mu_2) = \mu_2 \le \operatorname{sint}(f^{-1}(\operatorname{scl}(\mu_2, \frac{1}{2})), \frac{1}{2}) = \mu_2.$$

Hence f is a fuzzy weakly $\frac{1}{2}$ -semicontinuous mapping. Also, it is easy to see that

$$f^{-1}(\mu_1) = \mu_1 \nleq \operatorname{int}(f^{-1}(\operatorname{cl}(\mu_1, \frac{1}{2})), \frac{1}{2}) = \mu_3.$$

Thus f is not a fuzzy weakly $\frac{1}{2}$ -continuous mapping.

Example 3.9. A fuzzy weakly r-continuous mapping need not be a fuzzy weakly r-semicontinuous mapping.

Let $X=\{x,y,z\}$ and μ_1 and μ_2 be fuzzy sets in X defined as

$$\mu_1(x) = \frac{1}{5}, \ \mu_1(y) = \frac{1}{5}, \ \mu_1(z) = \frac{3}{10};$$

and

$$\mu_2(x) = \frac{7}{10}, \ \mu_2(y) = \frac{4}{5}, \ \mu_2(z) = \frac{1}{2}.$$

Define $\mathcal{T}_1:I^X o I$ and $\mathcal{T}_2:I^X o I$ by

$$\mathcal{T}_1(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_2, \\ 0 & \text{otherwise}; \end{cases}$$

and

$$\mathcal{T}_2(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise.} \end{cases}$$

Then \mathcal{T}_1 and \mathcal{T}_2 be fuzzy topologies on X. Consider the mapping $f:(X,\mathcal{T}_1)\to (X,\mathcal{T}_2)$ defined by f(x)=x for each $x\in X$. Then

$$f^{-1}(\tilde{0}) = \tilde{0} \le \operatorname{int}(f^{-1}(\operatorname{cl}(\tilde{0}, \frac{1}{2})), \frac{1}{2}) = \tilde{0},$$

$$f^{-1}(\tilde{1}) = \tilde{1} \leq \text{int}(f^{-1}(\text{cl}(\tilde{1},\frac{1}{2})),\frac{1}{2}) = \tilde{1},$$

and

$$f^{-1}(\mu_1) = \mu_1 \le \operatorname{int}(f^{-1}(\operatorname{cl}(\mu_1, \frac{1}{2})), \frac{1}{2}) = \mu_2.$$

Hence f is a fuzzy weakly $\frac{1}{2}$ -continuous mapping. On the other hand, it is easy to see that

$$f^{-1}(\mu_1) = \mu_1 \nleq \operatorname{sint}(f^{-1}(\operatorname{scl}(\mu_1, \frac{1}{2})), \frac{1}{2}) = \tilde{0}.$$

Thus f is not a fuzzy weakly $\frac{1}{2}$ -semicontinuous mapping.

Remark 3.10. From the above results one may easily verify the following implications. And none of the undrawn implications holds.

Theorem 3.11. Let $f:(X,T) \to (Y,\mathcal{U})$ be a mapping from a fuzzy topological space X to a fuzzy topological space Y and $r \in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy weakly r-semicontinuous mapping.
- (2) $\operatorname{scl}(f^{-1}(\operatorname{sint}(\mu, r)), r) \leq f^{-1}(\mu)$ for each fuzzy rclosed set μ in Y.
- (3) $f^{-1}(\operatorname{int}(\rho,r)) \leq \operatorname{sint}(f^{-1}(\operatorname{scl}(\rho,r)),r)$ for each fuzzy set ρ in Y.
- (4) $\mathrm{scl}(f^{-1}(\mathrm{sint}(\rho,r)),r) \leq f^{-1}(\mathrm{cl}(\rho,r))$ for each fuzzy set ρ in Y.

Proof. (1) \Rightarrow (2) Let f be fuzzy weakly r-semicontinuous and μ a fuzzy r-closed set in Y. Since μ^c is a fuzzy r-open set in Y,

$$(f^{-1}(\mu))^c = f^{-1}(\mu^c)$$

 $\leq \operatorname{sint}(f^{-1}(\operatorname{scl}(\mu^c, r)), r)$
 $= \operatorname{scl}(f^{-1}(\operatorname{sint}(\mu, r)), r)^c.$

Hence we have $\mathrm{scl}(f^{-1}(\mathrm{sint}(\mu,r)),r) \leq f^{-1}(\mu)$. (2) \Rightarrow (1) Let μ be a fuzzy r-open set in Y. Then μ^c is a fuzzy r-closed set in Y. By (2),

$$(f^{-1}(\mu))^c = f^{-1}(\mu^c) \ge \operatorname{scl}(f^{-1}(\operatorname{sint}(\mu^c, r)), r) = \operatorname{sint}(f^{-1}(\operatorname{scl}(\mu, r)), r)^c.$$

Thus we have $f^{-1}(\mu) \leq \operatorname{sint}(f^{-1}(\operatorname{scl}(\mu, r)), r)$. Hence f is a fuzzy weakly r-semicontinuous mapping.

(1) \Rightarrow (3) Let ρ be a fuzzy set in Y. Then int (ρ, r) is a fuzzy r-open set in Y. Since f is fuzzy weakly r-semicontinuous,

$$\begin{array}{ll} f^{-1}(\operatorname{int}(\rho,r)) & \leq & \operatorname{sint}(f^{-1}(\operatorname{scl}(\operatorname{int}(\rho,r),r)),r) \\ & \leq & \operatorname{sint}(f^{-1}(\operatorname{scl}(\rho,r)),r). \end{array}$$

 $(3) \Rightarrow (1)$ It is obvious.

(2) \Rightarrow (4) Let ρ be a fuzzy set in Y. Then $cl(\rho, r)$ is a fuzzy r-closed set in Y. By (2),

$$(4) \Rightarrow (2)$$
 It is obvious.

Definition 3.12. Let $f:(X,T) \to (Y,\mathcal{U})$ be a mapping from a fuzzy topological space X to a fuzzy topological space Y and $r \in I_0$. Then f is said to be fuzzy weakly r-semicontinuous at a fuzzy point x_{α} in X if for each fuzzy r-semiopen set μ in Y and $f(x_{\alpha}) \leq \mu$, there exists a fuzzy r-semiopen set ρ in X such that $x_{\alpha} \in \rho$ and $f(\rho) \leq \operatorname{scl}(\mu, r)$.

Theorem 3.13. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a mapping from a fuzzy topological space X to a fuzzy topological space Y and $r\in I_0$. Then f is fuzzy weakly r-semicontinuous if and only if f is fuzzy weakly r-semicontinuous for each fuzzy point x_{α} in X.

Proof. Let f be a fuzzy weakly r-semicontinuous mapping, x_{α} a fuzzy point in X and μ a fuzzy r-open set in Y such that $f(x_{\alpha}) \leq \mu$. Then $x_{\alpha} \leq f^{-1}(\mu) \leq \operatorname{sint}(f^{-1}(\operatorname{scl}(\mu,r)),r)$. Let $\rho = \operatorname{sint}(f^{-1}(\operatorname{scl}(\mu,r)),r)$. Then ρ is a fuzzy r-semiopen set in X and

$$\begin{array}{lcl} f(\rho) & = & f(\operatorname{sint}(f^{-1}(\operatorname{scl}(\mu,r)),r)) \\ & \leq & f(f^{-1}(\operatorname{scl}(\mu,r))) \\ & \leq & \operatorname{scl}(\mu,r). \end{array}$$

Hence f is a fuzzy weakly r-semicontinuous mapping for each fuzzy point x_{α} in X.

Conversely, let μ be a fuzzy r-open set in Y and x_{α} a fuzzy point in $f^{-1}(\mu)$. Then $f(x_{\alpha}) \leq \mu$. By hypothesis, there exists a fuzzy r-semiopen set $\rho_{x_{\alpha}}$ in X such that $x_{\alpha} \in \rho_{x_{\alpha}}$ and $f(\rho_{x_{\alpha}}) \leq \mathrm{scl}(\mu, r)$. Hence $x_{\alpha} \leq \rho_{x_{\alpha}} \leq f^{-1}(f(\rho_{x_{\alpha}})) \leq f^{-1}(\mathrm{scl}(\mu, r))$. So, $x_{\alpha} \leq \rho_{x_{\alpha}} = \mathrm{sint}(\rho_{x_{\alpha}}, r) \leq \mathrm{sint}(f^{-1}(\mathrm{scl}(\mu, r)), r)$. Thus

$$f^{-1}(\mu) = \bigvee \{ x_{\alpha} \mid x_{\alpha} \in f^{-1}(\mu) \}$$

$$\leq \bigvee \{ \rho_{x_{\alpha}} \mid x_{\alpha} \in f^{-1}(\mu) \}$$

$$\leq \inf(f^{-1}(\operatorname{scl}(\mu, r)), r).$$

Therefore f is a fuzzy weakly r-semicontinuous mapping. \Box

Let (X, \mathcal{T}) be a fuzzy topological space. For an r-cut $\mathcal{T}_r = \{ \mu \in I^X \mid \mathcal{T}(\mu) \geq r \}$, it is obvious that (X, \mathcal{T}_r) is a Chang's fuzzy topological space for all $r \in I_0$.

Let (X,T) be a Chang's fuzzy topological space and $r \in I_0$. Recall [3] that a fuzzy topology $T^r: I^X \to I$ is defined by

$$T^{r}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ r & \text{if } \mu = T - \{\tilde{0}, \tilde{1}\}, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 3.14. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a mapping from a fuzzy topological space X to a fuzzy topological space Y and $r\in I_0$. Then f is fuzzy weakly r-semicontinuous if and only if $f:(X,\mathcal{T}_r)\to (Y,\mathcal{U}_r)$ is fuzzy weakly semicontinuous.

Proof. Straightforward.

Theorem 3.15. Let $f:(X,T) \to (Y,U)$ be a mapping from a Chang's fuzzy topological space X to a Chang's fuzzy topological space Y and $r \in I_0$. Then f is fuzzy weakly semicontinuous if and only if $f:(X,T^r) \to (Y,U^r)$ is fuzzy weakly r-semicontinuous.

Proof. Straightforward.

Remark 3.16. By the above two theorems, we know that the concept of a fuzzy weakly r-semicontinuous mapping is a generalization of the concept of a fuzzy weakly semicontinuous mapping.

Acknowledgement. This work was supported by the research grant of the Chungbuk National University in 2007.

References

- [1] C. L. Chang, "Fuzzy topological spaces," J. Math. Anal. Appl., vol. 24, pp. 182–190, 1968.
- [2] S. Z. Bai, "Fuzzy weak semicontinuity," Fuzzy Sets and Systems, vol. 47, no. 1, pp. 93–98, 1992.
- [3] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, "Gradation of openness: Fuzzy topology," *Fuzzy Sets and Systems*, vol. 49, pp. 237–242, 1992.
- [4] R. N. Hazra, S. K. Samanta, and K. C. Chattopadhyay, "Fuzzy topology redefined," *Fuzzy Sets and Systems*, vol. 45, no. 1, pp. 79–82, 1992.
- [5] S. J. Lee and E. P. Lee, "Fuzzy *r*-continuous and fuzzy *r*-semicontinuous maps," *Int. J. Math. Math. Sci.*, vol. 27, no. 1, pp. 53–63, 2001.
- [6] S. J. Lee and E. P. Lee, "Fuzzy r-regular open sets and fuzzy almost r-continuous maps," *Bull. Korean Math. Soc.*, vol. 39, no. 3, pp. 441–453, 2002.
- [7] E. P. Lee, Various kinds of continuity in fuzzy topological spaces. PhD thesis, Chungbuk National University, 1998.

Seok Jong Lee

Professor of Chungbuk National University

Research Area: Fuzzy mathematics, Fuzzy topology, General topology

E-mail: sjl@chungbuk.ac.kr

Jin Tae Kim

Research Area: Fuzzy mathematics, Fuzzy topology, General topology

E-mail: kjtmath@hanmail.net